• Title/Summary/Keyword: selection operator

Search Result 163, Processing Time 0.029 seconds

A study of generation alternation model in genetic algorithm

  • Ito, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2002.10a
    • /
    • pp.93.4-93
    • /
    • 2002
  • When the GA is applied to optimization problems, it is important to maintain the diversity in designing generation alternation model. Generally, when the diversity is not fully maintained, it is difficult to find good solution, and it is easy to stagnate the early convergenece. In this paper, we propose the Elite Correlation Selection operator (ECS) as a new selection operator for survival. This selection operator aims to keep the diversity of populations and contributes the high searching ability. This selection operator is an extension of selection operator for survival in the Minimal Generation Gap (MGG). In the selection for survival, this selection operator selects one elite individual...

  • PDF

A study of selection operator using distance information between individuals in genetic algorithm

  • Ito, Minoru;Sugisaka, Masanori
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.1521-1524
    • /
    • 2003
  • In this paper, we propose a "Distance Correlation Selection operator (DCS)" as a new selection operator. For Genetic Algorithm (GA), many improvements have been proposed. The MGG (Minimal Generation Gap) model proposed by Satoh et.al. shows good performance. The MGG model has all advantages of conventional models and the ability of avoiding the premature convergence and suppressing the evolutionary stagnation. The proposed method is an extension of selection operator in the original MGG model. Generally, GA has two types of selection operators, one is "selection for reproduction", and the other is "selection for survival"; the former is for crossover and the latter is the individuals which survive to the next generation. The proposed method is an extension of the former. The proposed method utilizes distance information between individuals. From this extension, the proposed method aims to expand a search area and improve ability to search solution. The performance of the proposed method is examined with several standard test functions. The experimental results show good performance better than the original MGG model.

  • PDF

Comparison of Feature Selection Methods in Support Vector Machines (지지벡터기계의 변수 선택방법 비교)

  • Kim, Kwangsu;Park, Changyi
    • The Korean Journal of Applied Statistics
    • /
    • v.26 no.1
    • /
    • pp.131-139
    • /
    • 2013
  • Support vector machines(SVM) may perform poorly in the presence of noise variables; in addition, it is difficult to identify the importance of each variable in the resulting classifier. A feature selection can improve the interpretability and the accuracy of SVM. Most existing studies concern feature selection in the linear SVM through penalty functions yielding sparse solutions. Note that one usually adopts nonlinear kernels for the accuracy of classification in practice. Hence feature selection is still desirable for nonlinear SVMs. In this paper, we compare the performances of nonlinear feature selection methods such as component selection and smoothing operator(COSSO) and kernel iterative feature extraction(KNIFE) on simulated and real data sets.

Fuzzy Reasoning based Selection Operator for Genetic Algorithm (퍼지 추론 기반의 유전알고리즘 선택 연산자)

  • Seo, Ki-Sung;Hyun, Soo-Hwan
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.1
    • /
    • pp.116-121
    • /
    • 2008
  • This paper introduces a selection operator which utilized similarity and fitness of individuals based on fuzzy inference. Adding similarity feature to fitness, proposed selector obtained the decrease of premature convergence and better performances than other selectors. Moreover, an adoption of steady-state evolution provided enhancement of performances additionally. Experiments of proposed method for deceptive problems were tested and showed better performances than conventional methods.

Implementation of GA Processor with Multiple Operators, Based on Subpopulation Architecture (분할구조 기반의 다기능 연산 유전자 알고리즘 프로세서의 구현)

  • Cho Min-Sok;Chung Duck-Jin
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.52 no.5
    • /
    • pp.295-304
    • /
    • 2003
  • In this paper, we proposed a hardware-oriented Genetic Algorithm Processor(GAP) based on subpopulation architecture for high-performance convergence and reducing computation time. The proposed architecture was applied to enhancing population diversity for correspondence to premature convergence. In addition, the crossover operator selection and linear ranking subpop selection were newly employed for efficient exploration. As stochastic search space selection through linear ranking and suitable genetic operator selection with respect to the convergence state of each subpopulation was used, the elapsed time of searching optimal solution was shortened. In the experiments, the computation speed was increased by over $10\%$ compared to survival-based GA and Modified-tournament GA. Especially, increased by over $20\%$ in the multi-modal function. The proposed Subpop GA processor was implemented on FPGA device APEX EP20K600EBC652-3 of AGENT 2000 design kit.

Effective Robot Path Planning Method based on Fast Convergence Genetic Algorithm (유전자 알고리즘의 수렴 속도 향상을 통한 효과적인 로봇 길 찾기 알고리즘)

  • Seo, Min-Gwan;Lee, Jae-Sung;Kim, Dae-Won
    • Journal of the Korea Society of Computer and Information
    • /
    • v.20 no.4
    • /
    • pp.25-32
    • /
    • 2015
  • The Genetic algorithm is a search algorithm using evaluation, genetic operator, natural selection to populational solution iteratively. The convergence and divergence characteristic of genetic algorithm are affected by selection strategy, generation replacement method, genetic operator when genetic algorithm is designed. This paper proposes fast convergence genetic algorithm for time-limited robot path planning. In urgent situation, genetic algorithm for robot path planning does not have enough time for computation, resulting in quality degradation of found path. Proposed genetic algorithm uses fast converging selection strategy and generation replacement method. Proposed genetic algorithm also uses not only traditional crossover and mutation operator but additional genetic operator for shortening the distance of found path. In this way, proposed genetic algorithm find reasonable path in time-limited situation.

Development of Tool and Optimal Cutting Condition Selection Program (최적 절삭 조건을 고려한 절삭공구 선정 프로그램 개발)

  • Shin, Dong-Oh;Kim, Young-Jin;Ko, Sung-Lim
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.26 no.2
    • /
    • pp.165-170
    • /
    • 2000
  • In order to perform a successful material cutting process, the operators are to select the suitable machining tools and cutting conditions for the cutting environment. Up to now, this has been a complicated procedure done by the data in the tool manufacturers' paper catalog and the operator's experiencial knowledge, so called heuristics. This research is motivated by the fact that using computer techniques in processing vast amount of data and information, the operator can determine the tool and cutting condition easily. In the developed program, the selection of milling cutter, insert, and components are combined to provide optimal cutting speed, depth of cut, feed rate, rpm, and power. This program also provides the selection routine for end mill, drilling, turning, and grinding where the suitable tools are selected by workpiece, holder type, cut type, and insert shape.

  • PDF

How to improve oil consumption forecast using google trends from online big data?: the structured regularization methods for large vector autoregressive model

  • Choi, Ji-Eun;Shin, Dong Wan
    • Communications for Statistical Applications and Methods
    • /
    • v.29 no.1
    • /
    • pp.41-51
    • /
    • 2022
  • We forecast the US oil consumption level taking advantage of google trends. The google trends are the search volumes of the specific search terms that people search on google. We focus on whether proper selection of google trend terms leads to an improvement in forecast performance for oil consumption. As the forecast models, we consider the least absolute shrinkage and selection operator (LASSO) regression and the structured regularization method for large vector autoregressive (VAR-L) model of Nicholson et al. (2017), which select automatically the google trend terms and the lags of the predictors. An out-of-sample forecast comparison reveals that reducing the high dimensional google trend data set to a low-dimensional data set by the LASSO and the VAR-L models produces better forecast performance for oil consumption compared to the frequently-used forecast models such as the autoregressive model, the autoregressive distributed lag model and the vector error correction model.

Comparison of model selection criteria in graphical LASSO (그래프 LASSO에서 모형선택기준의 비교)

  • Ahn, Hyeongseok;Park, Changyi
    • Journal of the Korean Data and Information Science Society
    • /
    • v.25 no.4
    • /
    • pp.881-891
    • /
    • 2014
  • Graphical models can be used as an intuitive tool for modeling a complex stochastic system with a large number of variables related each other because the conditional independence between random variables can be visualized as a network. Graphical least absolute shrinkage and selection operator (LASSO) is considered to be effective in avoiding overfitting in the estimation of Gaussian graphical models for high dimensional data. In this paper, we consider the model selection problem in graphical LASSO. Particularly, we compare various model selection criteria via simulations and analyze a real financial data set.

Evaluating Variable Selection Techniques for Multivariate Linear Regression (다중선형회귀모형에서의 변수선택기법 평가)

  • Ryu, Nahyeon;Kim, Hyungseok;Kang, Pilsung
    • Journal of Korean Institute of Industrial Engineers
    • /
    • v.42 no.5
    • /
    • pp.314-326
    • /
    • 2016
  • The purpose of variable selection techniques is to select a subset of relevant variables for a particular learning algorithm in order to improve the accuracy of prediction model and improve the efficiency of the model. We conduct an empirical analysis to evaluate and compare seven well-known variable selection techniques for multiple linear regression model, which is one of the most commonly used regression model in practice. The variable selection techniques we apply are forward selection, backward elimination, stepwise selection, genetic algorithm (GA), ridge regression, lasso (Least Absolute Shrinkage and Selection Operator) and elastic net. Based on the experiment with 49 regression data sets, it is found that GA resulted in the lowest error rates while lasso most significantly reduces the number of variables. In terms of computational efficiency, forward/backward elimination and lasso requires less time than the other techniques.