• Title/Summary/Keyword: seismic wave

Search Result 773, Processing Time 0.024 seconds

Seismic Response of Stone Column-Improved Soft Clay Deposit by Using 1g Shaking Table (1g 진동대를 이용한 쇄석말뚝으로 개량된 연약점토 지반의 지진 응답 특성)

  • Kim, Jin-Man;Lee, Hyun-Jin;Ryu, Jeong-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.12
    • /
    • pp.61-70
    • /
    • 2010
  • A series of shaking table tests were conducted to estimate the seismic performance of soft ground deposits improved by stone column. The amplification of acceleration, shear strain, and shear wave velocity were evaluated to compare the seismic response of unimproved ground deposits with that of improved ground deposits. From the test results, it was shown that the stone column can prevent large shear deformation in ground deposits. However, it was also found that the acceleration of improved ground deposits may be amplified more than that of unimproved ground deposits when it was subjected to short periodic seismic wave. The results suggest that it is necessary to perform the ground response analysis with model experiments for both unimproved and improved ground deposits to evaluate the effect of stone column on the seismic performance of improved ground deposits.

A Study on the Breakwater Characteristics considering Seismic Magnitude (지진규모를 고려한 방파제 특성에 관한 연구)

  • Jeong, Jin-Ho;Lee, Kwang-Yeol;Lim, Chang-Kyu
    • Journal of the Korean Geosynthetics Society
    • /
    • v.13 no.1
    • /
    • pp.71-83
    • /
    • 2014
  • Busan is located at the mouth of Nakdong River and if an earthquake occurs, it is very likely that the damage by the earthquake will be worse as liquefaction can happen in the sand layer, builtup soil, and landfill ground due to amplification in the lower sedimentary layer that is well developed in the river mouth. Therefore, this study first examined the possibility of liquefaction in the replaced sand layer under breakwater using 14 earthquakes in 5.6-7.9 scale and artificial earthquakes including the seismic wave suggested in the standard specifications for seismic design of ports and fishing port facilities to evaluate the stability of breakwater which is the primary protective structure for port facilities against earthquakes. Second, analysis on characteristics of the seismic energy and acceleration response spectrum by size of earthquake was performed to suggest the most appropriate size of seismic wave for the condition in Korea. Third, finite element analysis was performed using the suggested seismic wave to study the characteristics of earthquake by finding the dynamic lateral displacement of breakwater and verifying the stability of structure and the displacement and forces occurring at geotextile. Results of the study showed that the possibility of liquefaction in the landfill and replaced sand layer, the dynamic lateral displacement of breakwater, and changes of geotextile are greatly affected by the subsurface ground (replaced sand layer).

Deduction of Correlations between Shear Wave Velocity and Geotechnical In-situ Penetration Test Data (전단파속도와 지반공학적 현장 관입시험 자료의 상관관계 도출)

  • Sun, Chang-Guk;Kim, Hong-Jong;Chung, Choong-Ki
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.4
    • /
    • pp.1-10
    • /
    • 2008
  • Shear wave velocity($V_S$), which can be obtained using various seismic tests, has been emphasized as representative geotechnical dynamic characteristic mainly for seismic design and seismic performance evaluation in the engineering field. For the application of conventional geotechnical site investigation techniques to geotechnical earthquake engineering, standard penetration tests(SPT) and piezocone penetration tests(CPTu) together with a variety of borehole seismic tests were performed at many sites in Korea. Through statistical modeling of the in-situ testing data, in this study, the correlations between $V_S$ and geotechnical in-situ penetrating data such as blow counts(N value) from SPT and piezocone penetrating data such as tip resistance ($q_t$), sleevefriction($f_s$), and pore pressure ratio($B_q$) were deduced and were suggested as an empirical method to determine $V_S$. Despite the incompatible strain levels of the conventional geotechnical penetration tests and the borehole seismic tests, it is shown that the suggested correlations in this study are applicable to the preliminary estimation of $V_S$ for Korean soil layers.

1-D Shear Wave Velocity Structure of Northwestern Part of Korean Peninsula (한반도 북서부의 1차원 전단파 속도구조)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.52 no.6
    • /
    • pp.555-560
    • /
    • 2019
  • One-dimensional shear wave velocity structure of North Korea is constrained using short (2-sec) to long period (30-sec) Rayleigh waves generated from four seismic events in China. Rayleigh waves are well recorded at the five broadband seismic stations (BRD, SNU, CHNB, YKB, KSA) which are located near to the border between North and South Korea. Group velocities of fundamental-mode Rayleigh waves are estimated with the Multiple Filter Analysis and refined by using the Phase Matched Filter. Average group velocity dispersion curve ranging from 2.9 to 3.2 km/s, is inverted to constrain the shear wave velocity structures. Relatively low group velocity dispersion curves along the path between the events to BRD at period from 4 to 6 seconds may correspond to the sedimentary sequence of the West Korea Bay Basin (WKBB) in the Yellow Sea. The low velocity zone in deep layers (14-20 km) may be related to the deep sedimentary structure in Pyongnam basin. The fast shear wave velocity structure from the surface to the depth of 14 km is consistent with the existence of metamorphic rocks and igneous bodies in Nangrim massif and Pyongnam basin.

P- and S-wave seismic studies in the Ulsan fault zone near Nongso-Eup (농소읍 부근 울산단층대에서의 P파 및 S파 탄성파 조사 연구)

  • Lee, Chang-Min;Kim, Ki-Young
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2006.06a
    • /
    • pp.95-100
    • /
    • 2006
  • To reveal subsurface structures of the Ulsan fault, seismic data were recorded along a 750-m long line near Nongso-Eup in Ulsan. P and S waves were generated simultaneously by impacting a 5 kg sledgehammer on a tilted plate. The data were received by 16 10-Hz 3-component geophones at 3 m intervals. Refracted P waves were inverted using the tomography method. Dip moveout and migration were applied to reflection data processed following a general sequence. Four layers were identified based on P-wave velocities and P- and S-wave stacked image. From top to bottom, the P-wave velocity of each layer ranges in $300{\sim}1100\;m/s$, $1100{\sim}1700\;m/s$, $1700{\sim}2700\;m/s$, and greater than 2700 m/s. The corresponding thickness of the top three layers averages 3.9 m, 5.9 m, 4.4 m, respectively. The S-wave stack section is effective to define subsurface structures shallower than 10 m.

  • PDF

Seismic modeling by Fourier Transform Method with one-Way Exploding Reflector Concept (일방향 exploding reflector개념에 적용한 Fourier 변환기법에 의한 Seismic modeling)

  • 정성종;곽훈성;김태균
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.13 no.6
    • /
    • pp.480-489
    • /
    • 1988
  • Although CDP stacking of common depth gathering is used to get the zero-offset-section, the exploding reflector concept is examined for the modeling of zero source to receiver offset sections in this paper. The acoustic wave equation is compared with a one way wave equation which represents the upgoing wave field only. The one way wave equation used is not derived through an expansion and, therefore, can represent dips up do 90b degrees and may not lost the signals by the dipping angles. There is apparently no simple counterpart of this equation is the space domain and it can be conveniently implemented only by a Fourier method. This paper compares their modeling technique with ray tracing and wave method for over thrust structure which is one of the geological structures are dificult to process and interpret. As a result of modeling much clean and accurate signals, especially, diffractions form the corner and dipping angles can be gathered.

  • PDF

Performance of a 3D pendulum tuned mass damper in offshore wind turbines under multiple hazards and system variations

  • Sun, Chao;Jahangiri, Vahid;Sun, Hui
    • Smart Structures and Systems
    • /
    • v.24 no.1
    • /
    • pp.53-65
    • /
    • 2019
  • Misaligned wind-wave and seismic loading render offshore wind turbines suffering from excessive bi-directional vibration. However, most of existing research in this field focused on unidirectional vibration mitigation, which is insufficient for research and real application. Based on the authors' previous work (Sun and Jahangiri 2018), the present study uses a three dimensional pendulum tuned mass damper (3d-PTMD) to mitigate the nacelle structural response in the fore-aft and side-side directions under wind, wave and near-fault ground motions. An analytical model of the offshore wind turbine coupled with the 3d-PTMD is established wherein the interaction between the blades and the tower is modelled. Aerodynamic loading is computed using the Blade Element Momentum (BEM) method where the Prandtl's tip loss factor and the Glauert correction are considered. Wave loading is computed using Morison equation in collaboration with the strip theory. Performance of the 3d-PTMD is examined on a National Renewable Energy Lab (NREL) monopile 5 MW baseline wind turbine under misaligned wind-wave and near-fault ground motions. The robustness of the mitigation performance of the 3d-PTMD under system variations is studied. Dual linear TMDs are used for comparison. Research results show that the 3d-PTMD responds more rapidly and provides better mitigation of the bi-directional response caused by misaligned wind, wave and near-fault ground motions. Under system variations, the 3d-PTMD is found to be more robust than the dual linear TMDs to overcome the detuning effect. Moreover, the 3d-PTMD with a mass ratio of 2% can mitigate the short-term fatigue damage of the offshore wind turbine tower by up to 90%.

Characterization of Deep Shear Wave Velocity Profiles in the Gimhae Plains Using the Microtremor Array Method (상시미동 표면파 분석에 의한 김해평야 퇴적층 심부 전단파 속도 결정)

  • Kim, Jae Hwi;Jeong, Seokho
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.8
    • /
    • pp.17-27
    • /
    • 2022
  • To characterize the dynamic properties of Gimhae Plains sediments, we calculated natural frequencies using microtremor horizontal-to-vertical spectral ratios and derived shear wave velocity profiles by inversion of Rayleigh-wave dispersion curves obtained by the high frequency-wavenumber and modified spatial autocorrelation methods. Our results suggest that in this region, strong amplification of ground motion is expected in the vibration frequency (f ≥ 1 Hz). Additionally, obtained velocity profiles show that shear wave velocities are ~200 and 400 m/s for the shallow marine and old fluvial sediments, respectively. Bedrock is possibly encountered at depths of 60-100 m at most sites. We developed a simplified shear wave velocity model of shallow sediments based on the obtained profiles. Our results suggest that a large area in the Gimhae Plains could be categorized as an S6 site based on the Korean seismic design code (KDS 17 10 00).

Dynamic Deformation Behavior of Aluminum Alloys Under High Strain Rate Compressive/Tensile Loading

  • Lee, Ouk-Sub;Kim, Guan-Hee;Kim, Myun-Soo;Hwang, Jai-Sug
    • Journal of Mechanical Science and Technology
    • /
    • v.17 no.6
    • /
    • pp.787-795
    • /
    • 2003
  • Mechanical properties of the materials used for transportations and industrial machinery under high strain rate loading conditions such as seismic loading are required to provide appropriate safety assessment to these mechanical structures. The Split Hopkinson Pressure Bar (SHPB) technique with a special experimental apparatus can be used to obtain the material behavior under high strain rate loading conditions. In this paper, dynamic deformation behaviors of the aluminum alloys such as A12024-T4, A1606 IT-6 and A17075-T6 under both high strain rate compressive and tensile loading conditions are determined using the SHPB technique.

A Pilot Study of Stiffness Mesurements for Tunnel-Face Materials Using In-hole Seismic Method (인홀 시험을 이용한 터널 막장의 암반강성 측정에 대한 적용성 연구)

  • Mok, Young-Jin;Kim, Young-Su
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.445-456
    • /
    • 2005
  • The research concentrates on improving the in-hole seismic probe, which has been developed in past five years, to be used in stiffness measurements of tunnel-face materials. The probe was down-sized to be fit in 45-mm diameter holes(or BX) drilled by a jumbo-drill, which is used to drill holes to install explosives for tunneling. Also trigger system was improved by using a down-speeding motor for operating convenience and air packing system was replaced with a set of plate-springs to eliminate supply of compressed air. These modifications are to adjust the probe for the unfavourable environment inside of tunnels and to test without any further drilling cost. The probe and testing procedure were successfully adopted with horizontal holes drilled by a jumbo-drill at a tunnel-face to evaluate the stiffness of rock mass. The measured shear wave velocities can be used to estimate deformation properties of rock mass for tunnel analyses.

  • PDF