• Title/Summary/Keyword: seismic test

Search Result 1,787, Processing Time 0.022 seconds

Pseudo Dynamic Test Research on the Seismic Performance of RC Bridge Piers Retrofitted with Fiber Sheet (섬유보강 RC교각의 내진성능에 관한 유사동적실험 연구)

  • 박종협;박희상;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.559-564
    • /
    • 2001
  • The objective of this experimental research is to assess the seismic performance of circular RC bridge pier specimens retrofitted with fibers which were designed as a prototype of Hagal bridge in the city of Suwon, Korea. Pseudo-dynamic test has been done for two nonseismic test specimens which were nonseismic designed by the related provisions of the Highway Design Specification, and four nonseismic test specimens retrofitted with fibers in the plastic hinge region. Important test parameters were load patterns, and retrofit. The seismic behavior has been analyzed through the displacement ductility, energy analysis, and capacity spectrum. Approximate 7.0 displacement ductility was observed for nonseismic test specimens retrofitted with fibers. It is concluded that these retrofitting test specimens could have sufficient seismic capacity in the region of moderate seismic zone.

  • PDF

Triaxial Shake Table Test about Seismic Performance of Ceiling System with Gypsum Panels (석고 패널이 부착된 천장 시스템의 내진성능 평가를 위한 3축 진동실험)

  • Park, Hae-Yong;Jeon, Bub-Gyu;Kim, Jae-Bong;Gim, Min-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, a full scale 3-axes shake table test for M-bar and T-bar type ceilings commonly used in the country was conducted. Through damage inspection during the test, seismic performance of ceilings according to variables, such as clearance between wall mold and ceiling as well as existence of facilities, was evaluated. A test frame consisted of square hollow section members was used for the shake table test. The experimental method was performed as a fragility test using required response spectrum described in ICC-ES AC156. In the case of architectural nonstructural component that contain ceilings, it mainly is evaluated the performance by post-test visual inspection. For the evaluation of seismic performance of ceilings, this study classified and defined damaged items for targeted ceiling system referring to illustrative damage according to nonstructural performance levels accordance with ASCE 41 and previous studies. And proposed illustrative damage items classification was utilized to compare the degree of the damage according to experimental variables. The experiment results confirmed that differences in boundary conditions due to the clearance at wall mold and the installation of facilities had a significant effect on the seismic performance of the ceiling.

Seismic Qualification Test on Motor Control Center for Use in Nuclear Power Plants (원자력발전소용 Motor Control Center의 내진검증시험)

  • 김병현
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.04a
    • /
    • pp.217-224
    • /
    • 1997
  • The safety related equipments for use in nuclear power plants should be subjected to the seismic qualification in order to insure the safety of the nuclear power plant. This paper summarizes the seismic qualification test on the Low Voltage Motor Control Centers(MCC's) for use in Wolsong Nuclear Power Plants, Units 2, 3 and 4. The seismic qualification test was performed on the two prototype MCC's(a two-bay wide unit for Phase #1 Test and a five-bay wide unit for Phase #2 Test). The specimens were electrically powered and monitored during the test process. It was demonstrated that the specimens possessed sufficient structural and electrical integrity to withstand the required seismic conditions.

  • PDF

Procedures of Biaxial Seismic Capacity Test and Seismic Performance Evaluation (수평이축방향 내진역량시험과 내진성능평가 절차)

  • 김재관;김익현;이재호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.453-460
    • /
    • 2001
  • The seismic capacity of columns usually has been tested in uniaxial loading condition. The seismic performance used to be evaluated under the same assumption. Since the real earthquake motion is multi-directional, the effects of multi-directional excitation on the seismic capacity of structures need to be carefully examined. In this paper, a frequency dependent alternate biaxial cyclic loading test is proposed as an evaluation method of seismic capacity under multi-directional excitation. Four test specimens were made and tested to study the degradation of strength, stiffness and ductility under biaxial loading condition. A multi- directional excitation. The capacity is obtained using frequency dependent alternate biaxial cyclic loading test. The orthogonal effect is taken into account by increasing the demand.

  • PDF

Nonlinear Analysis Model Development of Seismic Isolator Using Horizontal Seismic Excitation Responses of Isolated Test Structure (면진시험구조물의 수평가진응답을 활용한 면진장치 비선형 해석모델개발)

  • Lee, Jae-Han;Koo, Gyeong-Hoi;Yoo, Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.157-165
    • /
    • 2002
  • The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structural modeling of the isolated structure and isolation bearing. Based on the actual dynamic behaviors and the seismic responses of the test model, linear and bilinear models for isolators are suggested. Seismic analyses are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of isolators.

  • PDF

Seismic Performance of Concrete-Filled Steel Piers Part II: Pseudo-Dynamic Test and Residual Seismic Capacity (강합성교각의 내진성능평가 Part II: 유사동적실험 및 잔류내진성능 평가)

  • 조창빈;서진환;장승필
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.2
    • /
    • pp.21-28
    • /
    • 2002
  • Ductile behavior and strength of concrete-filled steel(CFS) piers was supported by many quasi-static cyclic loading tests. This test method, however, only estimates the member′s deformation capacity under escalating and repetitive displacement and ignores dynamic and random aspects of an earthquake load. Therefore, to understand complete seismic behavior of the structure against an earthquake, dynamic tests such as shaking table test and pseudo-dynamic tests are required as well as quasi-static tests. In this paper, following "Seismic Performance of Concrete-Filled Steel Piers Part I : Quasi-Static Cyclic Loadint Test", the seismic behavior of CFS and steel piers designed for I-Soo overpass in Seoul in investigated by the pseudo-dynamic test. In addition, the residual strength of both piers after an earthquake is estimated by the quasi-static test. The results show that both piers have satisfactory ductility and strength against well-known EI Centro earthquake although the CFS pier has better strength and energy dissipation than the steel pier.

Shaking Table Test for Seismic Performance Evaluation of Non-Seismic Designed Wall-Type Apartment (내진설계 되지 않은 공동주택의 진동대 실험에 의한 내진성능 평가)

  • Chung, Lan;Lee, Joung-Woo;Park, Tae-Won
    • Journal of the Korea Concrete Institute
    • /
    • v.18 no.6 s.96
    • /
    • pp.721-728
    • /
    • 2006
  • Earthquakes are reported thai building structures have been colossal damaged, but before 1988 designed structures which were not applicate seismic design code have no seismic performance. Especially, for the apartment structures were indicated that it have no resist wall element of earthquake before 1988 designed structures. We have to evaluate for seismic performance this structures, therefore it will be retrofitted for seismic index sufficient structures. We performed seismic performance evaluation for model structures by MIDAS which is general structure analysis software. In this study, it was performed shaking table test to evaluate model structure which is reinforcement concrete and 5 floors for seismic performance index. We made specimens by similar's law and tested shaking table test. In the shaking table test it is not performed prototype model test because of space and equipment condition. So we had made scale-down model for 1/5 by similar's law. That's why it needs for the evaluation of performance. However, it is not possible to do an experiment of prototype owing to the shortage of space and the limit of an experimental instrument in the shaking table test. Then, modeling and reducing the part of prototype do the experiment. In this experiment a shaking table test is done and seismic performance of model structures is evaluated by using similitude laws for scale down specimen. As a result it is proved that non-seismic design structures need to retrofit since seismic performance shows life safe grade in 0.12g of an earthquake.

Seismic performance evaluations of modular house having 4-clip fastening method (4-클립 체결방식을 갖는 모듈러 하우스의 내진성능평가)

  • Lim, Hyeon-jin;Cho, Chang-Geun;Shin, Jung-Kang;Lee, Sun-Joo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.41-48
    • /
    • 2022
  • The purpose of this study is to evaluate seismic performances of a modular house system developed by a simple 4-clip fastening method and double metal assembly made of lightweight metals. In order to evaluate structural and non-structural seismic performances of the system. Shaking table test was carried out with full-scale modular units, and a nonlinear pushover analysis was performed to obtain suitable seismic responses for story drifts, displacements, force resistances and dynamic properties of the system. Through 3D analysis and shaking table test, the current method of lightweight modular metal unit assembly and systems with seismic performance of a 4-clip fastening type modular house were demonstrated safe and effective to seismic design.

Seismic Performance Test of Concrete Column Reinforced with EPFT (EPFT 강관기둥으로 보강된 콘크리트 기둥의 내진성능실험)

  • Kim, Yu-Seong;Lee, Joon-Ho;Kim, Gee-Chul
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.3
    • /
    • pp.73-80
    • /
    • 2022
  • Unlike the CFT retrofit method, The EPFT retrofit method, which fills the steel tube with engineering plastic, does not require a separate concrete forming work and is a lightweight seismic Retrofit Method. In this study, an prototype model of the EPFT was proposed, and to analyze the seismic performance, an independent specimens and a reinforced concrete column were fabricated to conduct a seismic performance test. As a result of loading test of the independent specimens, the strength was increased compared to the steel tube column without internal filling, and the ductility ratio did not significantly increase due to the falling off of the weld. As a result of loading test of the concrete reinforcement specimen, the strength, ductility ratio, and energy dissipation were increased, and the number of cracks by loading step decreased compared to the non-reinforced specimen.

An Experimental Study on the Dynamic Behavior of the Seismic Isolator for Telecommunication Equipment Installed in a 15-Story Reinforced Concrete Building (15층 철근콘크리트 건물에 설치된 통신설비 면진장치 동적 거동에 대한 실험적 연구)

  • Choi, Hyoung Suk;Jung, Donghyuk;Seo, Young Deuk;Baek, Eun Rim
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.241-249
    • /
    • 2021
  • Communication facilities play an essential role in disaster situations. Therefore, communication facilities need to have structural and functional safety during and after earthquakes. Recently, technology for partial seismic isolation has been increasing to protect data facilities and communication equipment installed in buildings from earthquakes. However, excessive displacement may occur in the seismic isolator during an earthquake due to the resonance between the building and the seismic isolator having long-period characteristics, which may cause overturning and separation of the installed equipment. In this study, analytical and experimental studies were conducted to evaluate the safety of seismic isolators installed in high-rise buildings. It was confirmed that damages might occur in buildings' seismic isolator, with resonance characteristics of less than 1 Hz.