• 제목/요약/키워드: seismic sequences

검색결과 53건 처리시간 0.019초

Response of structures to seismic sequences corresponding to Mexican soft soils

  • Diaz-Martinez, Gerardo;Ruiz-Garcia, Jorge;Teran-Gilmore, Amador
    • Earthquakes and Structures
    • /
    • 제7권6호
    • /
    • pp.1241-1258
    • /
    • 2014
  • This is paper presents the results of an analytical study aimed at evaluating the effect of narrow-banded mainshock/aftershock seismic sequences on the response of structures built on very soft soil sites. Due to the scarce availability of recorded seismic sequences in accelerographic stations located in the lake-bed of Mexico City, artificial narrow-banded sequences were employed. In the first part of this study, a parametric investigation was carried out to identify the mainshock/aftershock ground motion features that have detrimental effects in the seismic performance of equivalent single-degree-of-freedom systems representative of framed-buildings that house standard and essential facilities. In the second part of this work, the seismic response of two (8- and 18-story) steel-moment resisting frames that house essential facilities is examined. It is concluded that buildings with fundamental periods of vibration longer than the dominant period of the mainshock can experience a significant increment in their inter-story drift demands due to the occurrence of an aftershock.

Moment resisting steel frames under repeated earthquakes

  • Loulelis, D.;Hatzigeorgiou, G.D.;Beskos, D.E.
    • Earthquakes and Structures
    • /
    • 제3권3_4호
    • /
    • pp.231-248
    • /
    • 2012
  • In this study, a systematic investigation is carried out on the seismic behaviour of plane moment resisting steel frames (MRF) to repeated strong ground motions. Such a sequence of earthquakes results in a significant damage accumulation in a structure because any rehabilitation action between any two successive seismic motions cannot be practically materialised due to lack of time. In this work, thirty-six MRF which have been designed for seismic and vertical loads according to European codes are first subjected to five real seismic sequences which are recorded at the same station, in the same direction and in a short period of time, up to three days. Furthermore, the examined frames are also subjected to sixty artificial seismic sequences. This investigation shows that the sequences of ground motions have a significant effect on the response and, hence, on the design of MRF. Additionally, it is concluded that ductility demands, behaviour factor and seismic damage of the repeated ground motions can be satisfactorily estimated using appropriate combinations of the corresponding demands of single ground motions.

Seismic response of RC frames under far-field mainshock and near-fault aftershock sequences

  • Hosseini, Seyed Amin;Ruiz-Garcia, Jorge;Massumi, Ali
    • Structural Engineering and Mechanics
    • /
    • 제72권3호
    • /
    • pp.395-408
    • /
    • 2019
  • Engineered structures built in seismic-prone areas are affected by aftershocks in addition to mainshocks. Although aftershocks generally are lower in magnitude than that of the mainshocks, some aftershocks may have higher intensities; thus, structures should be able to withstand the effect of strong aftershocks as well. This seismic scenario arises for far-field mainshock along with near-field aftershocks. In this study, four 2D reinforced concrete (RC) frames with different numbers of stories were designed in accordance with the current Iranian seismic design code. As a way to evaluate the seismic response of the case-study RC frames, the inter-story drift ratio (IDR) demand, the residual inter-story drift ratio (RIDR) demand, the Park-Ang damage index, and the period elongation ratio can be useful engineering demand parameters for evaluating their seismic performance under mainshock-aftershock sequences. The frame models were analyzed under a set of far-field mainshock, near-fault aftershocks seismic sequences using nonlinear dynamic time-history analysis to investigate the relationship among IDR, RIDR, Park-Ang damage index and period ratio experienced by the frames. The results indicate that the growth of IDR, RIDR, Park-Ang damage index, and period ratio in high-rise and short structures under near-fault aftershocks were significant. It is evident that engineers should consider the effects of near-fault aftershocks on damaged frames that experience far-field mainshocks as well.

Safety assessment of dual shear wall-frame structures subject to Mainshock-Aftershock sequence in terms of fragility and vulnerability curves

  • Naderpour, Hosein;Vakili, Khadijeh
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.425-436
    • /
    • 2019
  • Successive ground motions having short time intervals have occurred in many earthquakes so far. It is necessary to investigate the effects of this phenomenon on different types of structures and to take these effects into consideration while designing or retrofitting structures. The effects of seismic sequences on the structures with combined reinforced concrete shear wall and moment resisting frame system have not been investigated in details yet. This paper has tried to analyse the seismic performance of structures with such structural systems subjected to mainshock-aftershock sequences. The effects of the seismic sequences on the investigated models are evaluated by strong measures such as IDA capacity and fragility and vulnerability curves. The results of this study show that the seismic sequences have a significant effect on the investigated models, which necessitates considering this effect on designing, retrofitting, decision making, and taking precautions.

Effects of consecutive earthquakes on increased damage and response of reinforced concrete structures

  • Amiri, Gholamreza Ghodrati;Rajabi, Elham
    • Computers and Concrete
    • /
    • 제21권1호
    • /
    • pp.55-66
    • /
    • 2018
  • A large main shock may consist of numerous aftershocks with a short period. The aftershocks induced by a large main shock can cause the collapse of a structure that has been already damaged by the preceding main shock. These aftershocks are important factors in structural damages. Furthermore, despite what is often assumed in seismic design codes, earthquakes do not usually occur as a single event, but as a series of strong aftershocks and even fore shocks. For this reason, this study investigates the effect and potential of consecutive earthquakes on the response and behavior of concrete structures. At first, six moment resisting concrete frames with 3, 5, 7, 10, 12 and 15 stories are designed and analyzed under two different records with seismic sequences from real and artificial cases. The damage states of the model frames were then measured by the Park and Ang's damage index. From the results of this investigation, it is observed that the sequences of ground motions can almost double the accumulated damage and increased response of structures. Therefore, it is certainly insufficient to ignore this effect in the design procedure of structures. Also, the use of artificial seismic sequences as design earthquake can lead to non-conservative prediction of behavior and damage of structures under real seismic sequences.

The capacity loss of a RCC building under mainshock-aftershock seismic sequences

  • Zhai, Chang-Hai;Zheng, Zhi;Li, Shuang;Pan, Xiaolan
    • Earthquakes and Structures
    • /
    • 제15권3호
    • /
    • pp.295-306
    • /
    • 2018
  • Reinforced concrete containment (RCC) building has long been considered as the last barrier for keeping the radiation from leaking into the environment. It is important to quantify the performance of these structures and facilities considering extreme conditions. However, the preceding research on evaluating nuclear power plant (NPP) structures, particularly considering mainshock-aftershock seismic sequences, is deficient. Therefore, this manuscript serves to investigate the seismic fragility of a typical RCC building subjected to mainshock-aftershock seismic sequences. The implementation of the fragility assessment has been performed based on the incremental dynamic analysis (IDA) method. A lumped mass RCC model considering the tri-linear skeleton curve and the maximum point-oriented hysteretic rule is employed for IDA analyses. The results indicate that the seismic capacity of the RCC building would be overestimated without taking into account the mainshock-aftershock effects. It is also found that the seismic capacity of the RCC building decreases with the increase of the relative intensity of aftershock ground motions to mainshock ground motions. In addition, the effects of artificial mainshock-aftershock ground motions generated from the repeated and randomized approaches and the polarity of the aftershock with respect to the mainshock on the evaluation of the RCC are also researched, respectively.

The impact of successive earthquakes on the seismic damage of multistorey 3D R/C buildings

  • Kostinakis, Konstantinos;Morfidis, Konstantinos
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.1-12
    • /
    • 2017
  • Historical earthquakes have shown that successive seismic events may occur in regions of high seismicity. Such a sequence of earthquakes has the potential to increase the damage level of the structures, since any rehabilitation between the successive ground motions is practically impossible due to lack of time. Few studies about this issue can be found in literature, most of which focused their attention on the seismic response of SDOF systems or planar frame structures. The aim of the present study is to examine the impact of seismic sequences on the damage level of 3D multistorey R/C buildings with various structural systems. For the purposes of the above investigation a comprehensive assessment is conducted using three double-symmetric and three asymmetric in plan medium-rise R/C buildings, which are designed on the basis of the current seismic codes. The buildings are analyzed by nonlinear time response analysis using 80 bidirectional seismic sequences. In order to account for the variable orientation of the seismic motion, the two horizontal accelerograms of each earthquake record are applied along horizontal orthogonal axes forming 12 different angles with the structural axes. The assessment of the results revealed that successive ground motions can lead to significant increase of the structural damage compared to the damage caused by the corresponding single seismic events. Furthermore, the incident angle can radically alter the successive earthquake phenomenon depending on the special characteristics of the structure, the number of the sequential earthquakes, as well as the distance of the record from the fault.

Assessment of post-earthquake serviceability for steel arch bridges with seismic dampers considering mainshock-aftershock sequences

  • Li, Ran;Ge, Hanbin;Maruyama, Rikuya
    • Earthquakes and Structures
    • /
    • 제13권2호
    • /
    • pp.137-150
    • /
    • 2017
  • This paper focuses on the post-earthquake serviceability of steel arch bridges installed with three types of seismic dampers suffered mainshock-aftershock sequences. Two post-earthquake serviceability verification methods for the steel arch bridges are compared. The energy-absorbing properties of three types of seismic dampers, including the buckling restrained brace, the shear panel damper and the shape memory alloy damper, are investigated under major earthquakes. Repeated earthquakes are applied to the steel arch bridges to examine the influence of the aftershocks to the structures with and without dampers. The relative displacement is proposed for the horizontal transverse components in such complicated structures. Results indicate that the strain-based verification method is more conservative than the displacement-base verification method in evaluating the post-earthquake serviceability of structures and the seismic performance of the retrofitted structure is significantly improved.

Seismic response of operational tunnels to earthquakes with foreshocks or aftershocks

  • Junyoung Lee;Jae-Kwang Ahn;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • 제38권6호
    • /
    • pp.621-631
    • /
    • 2024
  • In designing earthquake-resistant structures, we traditionally select dynamic loads based on the recurrence period of earthquakes, using individual seismic records or aligning them with the design spectrum. However, these records often represent isolated waveforms lacking continuity, underscoring the need for a deeper understanding of natural seismic phenomena. The Earth's crustal movement, both before and after a significant earthquake, can trigger a series of both minor and major seismic events. These minor earthquakes, which often occur in short time before or after the major seismic events, prompt a critical reassessment of their potential impact on structural design. In this study, we conducted a detailed tunnel response analysis to assess the impact of both single mainshock and multiple earthquake scenarios (including foreshock-mainshock and mainshock-aftershock sequences). Utilizing numerical analysis, we explored how multiple earthquakes affect tunnel deformation. Our findings reveal that sequential seismic events, even those of moderate magnitude, can exert considerable stress on tunnel lining, resulting in heightened bending stress and permanent displacement. This research highlights a significant insight: current seismic design methodologies, which predominantly focus on the largest seismic intensity, may fail to account for the cumulative impact of smaller, yet frequent, seismic events like foreshocks and aftershocks. Our results demonstrate that dynamic analyses considering only a single mainshock are likely to underestimate the potential damage (i.e., ovaling deformation, failure lining, permanent displacement etc.) when compared to analyses that incorporate multiple earthquake scenarios.

Seismic performance assessments of precast energy dissipation shear wall structures under earthquake sequence excitations

  • Zhang, Hao;Li, Chao;Wang, Zhi-Fang;Zhang, Cai-Yan
    • Earthquakes and Structures
    • /
    • 제18권2호
    • /
    • pp.147-162
    • /
    • 2020
  • This paper presents a novel precast energy dissipation shear wall (PEDSW) structure system that using mild steel dampers as dry connectors at the vertical joints to connect adjacent wall panels. Analytical studies are systematically conducted to investigate the seismic performance of the proposed PEDSW under sequence-type ground motions. During earthquake events, earthquake sequences have the potential to cause severe damage to structures and threaten life safety. To date, the damage probability of engineering structures under earthquake sequence has not been included in structural design codes. In this study, numerical simulations on single-story PEDSW are carried out to validate the feasibility and reliability of using mild steel dampers to connect the precast shear walls. The seismic responses of the PEDSW and cast-in-place shear wall (CIPSW) are comparatively studied based on nonlinear time-history analyses, and the effectiveness of the proposed high-rise PEDSW is demonstrated. Next, the foreshock-mainshock-aftershock type earthquake sequences are constructed, and the seismic response and fragility curves of the PEDSW under single mainshock and earthquake sequences are analyzed and compared. Finally, the fragility analysis of PEDSW structure under earthquake sequences is performed. The influences of scaling factor of the aftershocks (foreshocks) to the mainshocks on the fragility of the PEDSW structure under different damage states are investigated. The numerical results reveal that neglecting the effect of earthquake sequence can lead to underestimated seismic responses and fragilities, which may result in unsafe design schemes of PEDSW structures.