• Title/Summary/Keyword: seismic safety assessment

Search Result 219, Processing Time 0.018 seconds

Investigation of Axially Loaded Jacked Pile Behavior by Pile Load Test (말뚝재하시험을 통한 압입강관말뚝의 연직지지거동 분석)

  • Baek, Sung-Ha;Do, Eun-Su;Kim, Seok-Jung
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.7
    • /
    • pp.39-49
    • /
    • 2018
  • Jacked pile that involves the use of hydraulic jacks to press the piles into the ground is free from noise and vibration, and is possibly installed within a limited construction area. Thus, as an alternative to conventional pile driving methods, pile jacking could become widely accepted for the construction projects in urban area (e.g., reconstruction or remodeling construction projects). Great concern has arisen over the prediction of axially loaded jacked pile behavior. Against this background, a series of pile load tests were hence conducted on a jacked steel pipe pile installed in weathered zone (i.e., weathered soil and weathered rock). From the test results, base resistance and shaft resistance for each test condition were evaluated and compared with the values predicted by the previous driven pile resistance assessment method. Test results showed that the previous driven pile resistance assessment method highly underestimated both the base and shaft resistances of a jacked pile; differences were more obviously observed with the shaft resistance. The reason for this discrepancy is that a driven pile normally experiences a larger number of loading/unloading cycles during installation, and therefore shows significantly degraded stiffness of surrounding soil. Based on the results of the pile load tests, particular attention was given to the modification of the previous driven pile resistance assessment method for investigating the axially loaded jacked pile behavior.

Verification of 2-Parameters Site Classification System and Site Coefficients (II) - Earthquake Records in Korea (2-매개변수 지반분류 방법 및 지반 증폭계수의 검증 (II) - 국내 실지진 기록을 통한 검증)

  • Lee, Sei-Hyun;Park, Dong-Hee;Ha, Jeong-Gon;Kim, Dong-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.28 no.3
    • /
    • pp.35-43
    • /
    • 2012
  • Following the companion paper (I. Comparisons with Well-known Seismic Code and Site Response Characteristics), several acceleration data recorded during recent earthquake events in Korea were analyzed to verify the suitability of the proposed two-parameters site classification system and the corresponding site coefficients. For all of rock-soil site pairs less than 30 km distant, response spectrums and corresponding site coefficients, $F_a$ and $F_v$, were determined. Unfortunately, some of data have an eccentric error, where the spectral acceleration of rock site is more amplified than that of soil site. The $F_a$ and $F_v$ for all of pairs except the pairs of error were compared with those in the current code and the proposed system. The $F_a$ and $F_v$ from the recorded motions show definitely different trend from that of the current code. In addition, the site coefficients from recorded motions at four 765 kV substation sites, which are several hundred meters distant, have a remarkably similar trend and absolute values to those in proposed two-parameters site classification system. Based on earthquake motions recorded in domestic areas including data from the four 765 kV substation sites, the two-parameters site classification and site coefficients are superior to the results obtained from the current Korean seismic code.

An Evaluation of Soil-Water Characteristic Curve Model for Compacted Bentonite Considering Temperature Variation (온도 변화를 고려한 압축 벤토나이트 완충재의 함수특성곡선 모델 평가)

  • Yoon, Seok;Jeon, Jun-Seo;Go, Gyu-Hyun;Kim, Geon-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.36 no.10
    • /
    • pp.33-39
    • /
    • 2020
  • A geological repository has been considered as an option for the disposal of high-level radioactive waste (HLW). The HLW is disposed in a host rock at a depth of 500~1,000 meters below the ground surface based on the concept of engineered barrier system (EBS). The EBS is composed of a disposal canister, buffer material, backfill material, and gap-filling material. The compacted bentonite buffer is very important since it can restrain the release of radionuclide and protect the canister from the inflow of ground water. The saturation of the buffer decreases because high temperature in a disposal canister is released into the surrounding buffer material, but saturation of the buffer increases because of the inflow of ground water. The unsaturated properties of the buffer are critical input parameters for the entire safety assessment of the engineered barrier system. In Korea, Gyeongju bentonite can be considered as a candidate buffer material, but there are few test results of the unsaturated properties considering temperature variation. Therefore, this paper conducted experiment of soil-water characteristic curve for the Gyeongju compacted bentonite considering temperature variation under a constant water content condition. The relative error showed approximately 2% between test results and modified van-Genuchten model values.

Experimental Assessment for the Effect of Burial Depth on the Formation of Underground Cavities and Ground Cave-ins by Damaged Sewer Pipes (하수관 손상으로 인한 지하공동 및 지반함몰 발생에 대한 하수관 매립심도 영향의 실험적 평가)

  • Kwak, Tae-Young;Chung, Choong-Ki;Kim, Joonyoung;Lee, Minho;Woo, Sang-Inn
    • Journal of the Korean Geotechnical Society
    • /
    • v.35 no.11
    • /
    • pp.37-49
    • /
    • 2019
  • In order to analyze the effect of burial depth on the generation of ground cavities and cave-ins, a series of model experiments with different height of model ground were performed. Digital images of the model ground were captured to evaluate the internal deformation of the model grounds by adopting the PIV (Particle Image Velocimetry) technique. Additionally, the vertical displacement at the surface, the size of the cavity, and the weight of the discharged soil were measured in each test. The results indicate that the model ground with low burial depth, which does not satisfy the criterion, was more vulnerable to ground cavities and cave-ins than the model ground with high burial depth.

A Study on Feasibility of Surface Wave Application for the Assessment of Physical Properties of Dam (표면파 적용 댐체 물성 조사 타당성 연구)

  • Kim, Hyoung-Soo;Min, Dong-Ju;Kim, Jung-Yul;Ha, Ik-Soo;Oh, Suk-Hoon
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2005.03a
    • /
    • pp.384-391
    • /
    • 2005
  • Three dimensional finite difference elastic wave model was developed to estimate the feasibility of surface wave applications in geotechnical problems. The wave motions calculated by the developed program in this study shows good agreement with well known analytic solutions. The surface wave motions calculated from layered dam type structure can be interpreted as a infinite layer structure using dispersion curve but it is need a special source of which high energy in frequency band lower than 10 Hz to get information of physical properties in few tens meter deep. The source which has high energy in the low frequency band, however, can give defect on dam and this will make some limitation in real field applications. The dispersion curves calculated from the surface wave motion of homogeneous and center core type dam models will give rise to fatal errors if the conventional infinite layer structure used in their interpretation because the surrounding materials and boundaries of dam make some distortion in dispersion curve of surface wave. So it is strongly recommended to use three dimensional inversion model for correct interpretation and estimation of physical properties of dam materials.

  • PDF

Integrity test and depth estimation of deep foundations (깊은 기초의 건전도시험과 근입깊이 조사)

  • Jo Churl-hyun;Jung Hyun-key;Lee Tai-sup;Kim Hag-soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.202-216
    • /
    • 1999
  • The deep foundation is frequently used for the infrastructures. Since the quality control of the cast-in-place concrete foundations such as CIP piles and slurry walls is not so easy as that of the ready made PC(prestressed concrete) piles, it is necessary to get the information on the integrity of the concrete of the foundation. The depth estimation of foundations whose depths are unknown is also very important in repair and reinforcement works or in safety inspection and assessment to the big structures. The cross-hole sonic logging(CSL) system and the single channel reflection seismic measurement system were developed to test the integrity of pile. The former is well applied to CIP structures, while the later to all kinds of piles with less accurate result compared to that of CSL. To estimate the depth of the deep foundations, parallel seismics, borehole RADAR, and borehole magnetics can be used.

  • PDF

Engineering Characteristics Assessment of Rapid Set Controlled Low Strength Material for Sewer Pipe Using Excavated Soil (굴착토를 활용한 속경성 유동성 채움재의 공학적 특성 평가)

  • Kim, Young-Wook;Lee, Bong-Chun;Jung, Sang-Hwa
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.8 no.4
    • /
    • pp.450-457
    • /
    • 2020
  • In this study, engineering characteristics such as flowability, segregation and compressive strength by age to derive fast hardening material mixing proportion using excavated soil. And based on optimal mixing proportion, field simulation experiment conducted in laboratory to examine the effectiveness of the method such as kelly ball drop test and soil penetration test for reviewing the following process. As as a result of evaluation, in case of kelly ball drop test and soil penetration test were securing the following process initiation time 3 hours after place CLSM. As results of these assessments, kelly ball drop test and soil penetration test were applicable for revewing following process in construction field besides unconfined compressive strength method.

Nonlinear incremental dynamic analysis and fragility curves of tall steel buildings with buckling restrained braces and tuned mass dampers

  • Verki, Amir Masoumi;Preciado, Adolfo
    • Earthquakes and Structures
    • /
    • v.22 no.2
    • /
    • pp.169-184
    • /
    • 2022
  • The importance of seismicity in developing countries and the strengthening of buildings is a topic of major importance. Therefore, the study of several solutions with the development of new technologies is of great importance to investigate the damage on retrofitted structures by using probabilistic methods. The Federal Emergency Management Agency considers three types of performance levels by considering different scenarios, intensity and duration. The selection and scaling of ground motions mainly depends on the aim of the study. Intensity-based assessments are the most common and compute the response of buildings for a specified seismic intensity. Assessments based on scenarios estimate the response of buildings to different earthquake scenarios. A risk-based assessment is considered as one of the most effective. This research represents a practical method for developing countries where exists many active faults, tall buildings and lack of good implementable approaches. Therefore, to achieve the main goal, two high-rise steel buildings have been modeled and assessed. The contribution of buckling-restrained braces in the elastic design of both buildings is firstly verified. In the nonlinear static range, both buildings presented repairable damage at the central top part and some life safety hinges at the bottom. The nonlinear incremental dynamic analysis was applied by 15 representative/scaled accelerograms to obtain levels of performance and fragility curves. The results shown that by using probabilistic methods, it is possible to estimate the probability of collapse of retrofitted buildings by buckling-restrained braces and tuned mass dampers, which are practical retrofitting options to protect existing structures against earthquakes.

Diverse modeling techniques, parameters, and assumptions for nonlinear dynamic analysis of typical concrete bridges with different pier-to-deck connections: which to use and why

  • Morkos, B.N.;Farag, M.M.N.;Salem, S.;Mehanny, S.S.F.;Bakhoum, M.M.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.245-261
    • /
    • 2022
  • Key questions to researchers interested in nonlinear analysis of skeletal structures are whether the distributed plasticity approach - albeit computationally demanding - is more reliable than the concentrated plasticity to adequately capture the extent and severity of the inelastic response, and whether force-based formulation is more efficient than displacement-based formulation without compromising accuracy. The present research focusing on performance-based seismic response of mid-span concrete bridges provides a pilot holistic investigation opting for some hands-on answers. OpenSees software is considered adopting different modeling techniques, viz. distributed plasticity (through either displacement-based or force-based elements) and concentrated plasticity via beam-with-hinges elements. The pros and cons of each are discussed based on nonlinear pushover analysis results, and fragility curves generated for various performance levels relying on incremental dynamic analyses under real earthquake records. Among prime conclusions, distributed plasticity modeling albeit inherently not relying on prior knowledge of plastic hinge length still somewhat depends on such information to ensure accurate results. For instance, displacement-based and force-based approaches secure optimal accuracy when dividing, for the former, the member into sub-elements, and satisfying, for the latter, a distance between any two consecutive integration points, close to the expected plastic hinge length. On the other hand, using beam-with-hinges elements is computationally more efficient relative to the distributed plasticity, yet with acceptable accuracy provided the user has prior reasonable estimate of the anticipated plastic hinge length. Furthermore, when intrusive performance levels (viz. life safety or collapse) are of concern, concentrated plasticity via beam-with-hinges ensures conservative predicted capacity of investigated bridge systems.