• Title/Summary/Keyword: seismic response assessment

Search Result 302, Processing Time 0.023 seconds

Seismic Analysis of Ground for Seismic Risk Assessment of Architectural Heritage in Seoul (건축문화재 지진 위험도 평가를 위한 지반의 내진해석 : 서울지역을 중심으로)

  • Han, Jung-Geun;Keon, Seong-Kon;Hong, Kikwon
    • Journal of the Korean Geosynthetics Society
    • /
    • v.12 no.4
    • /
    • pp.133-141
    • /
    • 2013
  • This paper describes the earthquake risk evaluation of 15 sites of architectural heritages, which are considered ground conditions of sites in Seoul. In order to acquire the input data of earthquake response analysis, surface wave exploration was performed at the site. Earthquake response analysis and 3D earthquake safety evaluation were carried out under the base of scenario earthquakes. Ground displacements of areas, which are located on architectural heritages, are showed about 0.5 mm ~ 9.7 mm, and it was analyzed to small affected by earthquakes. In case of Naksungdae three-story stone pagoda, ground displacement is similar to the others. However, displacement of three-story stone pagoda with granite is 30 mm on the top, because the greatest occurrence of that is caused by stress release at seismic wave effect.

A Study on Seismic Capacity of Circular Spiral Reinforced Concrete Bridge Piers used in High Strength Concrete (고강도 원형나선철근기둥의 내진성능에 관한 연구)

  • 김광수;김민구;배성용;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.547-552
    • /
    • 2001
  • This research was conducted to investigate the seismic behavior and capacity assessment of circular spiral reinforcement concrete bridge piers used in high strength concrete. The displacement ductility, response modification factor(R), effective stiffness and plastic hinge region etc. was used to assess the seismic behavior and capacity of circular spiral reinforcement concrete bridge piers. The experimental variables of bridge piers test consisted of amount and spacing, different axial load levels. From the quasi-static tests on 9 bridge piers and analysis, it is found that current seismic design code specification of transverse confinement steel requirements and details may be revised.

  • PDF

Assessment and Monitoring of Structural Damage Using Seismic Wave Interferometry (탄성파 간섭법 탐사를 이용한 건축물 손상 평가 및 모니터링)

  • In Seok Joung;AHyun Cho;Myung Jin Nam
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.144-153
    • /
    • 2024
  • Recent research is increasingly focused on utilizing seismic waves for structure health monitoring (SHM). Specifically, seismic interferometry, a technique applied in geophysical surveys using ambient noise, is widely applied in SHM. This method involves analyzing the response of buildings to propagating seismic waves. This enables the estimation of changes in structural stiffness and the evaluation of the location and presence of damage. Analysis of seismic interferometry applied to SHM, along with case studies, indicates its highly effective application for assessing structural stability and monitoring building conditions. Seismic interferometry is thus recognized as an efficient approach for evaluating building integrity and damage detection in SHM and monitoring applications.

Seismic Nonlinear Damage Assessment and Retrofit Strategies for Existing Bridges with Isolation System using Retrofit Slate Function (비선형 내진 손상도 평가 및 보강상태함수를 이용한 기존교량의 내진 보강 전략)

  • Cho, Hyo-Nam;Choi, Hyun-Ho;Eom, Won-Seok;Shin, Man-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.179-191
    • /
    • 2002
  • This paper presents a systematic approach to the seismic nonlinear analysis and retrofit strategies for existing bridges with isolation system using retrofit slate function newly proposed in this study. A seismic retrofit scheme using sliding base isolation system was presented to reduce the seismic hazard for bridge structures. In this study, two types of isolation systems such as lead bearings and sliding isolators were used. The behavior of sliding isolators was modeled by a triaxial interaction model. And three types of earthquakes such as El Centro, San Fernando, and the artificial were used as earthquake ground excitations. Seismic response analyses of the bridge before and after retrofit were effectively carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-Bridge. Also, this paper proposes a retrofit state function for easily representing the efficiency of a retrofit scheme.

Seismic fragility assessments of fill slopes in South Korea using finite element simulations

  • Dung T.P. Tran;Youngkyu Cho;Hwanwoo Seo;Byungmin Kim
    • Geomechanics and Engineering
    • /
    • v.34 no.4
    • /
    • pp.341-380
    • /
    • 2023
  • This study evaluates the seismic fragilities in fill slopes in South Korea through parametric finite element analyses that have been barely investigated thus far. We consider three slope geometries for a slope of height 10 m and three slope angles, and two soil types, namely frictional and frictionless, associated with two soil states, loose and dense for frictional soils and soft and stiff for frictionless soils. The input ground motions accounting for four site conditions in South Korea are obtained from one-dimensional site response analyses. By comparing the numerical modeling of slopes using PLAXIS2D against the previous studies, we compiled suites of the maximum permanent slope displacement (Dmax) against two ground motion parameters, namely, peak ground acceleration (PGA) and Arias Intensity (IA). A probabilistic seismic demand model is adopted to compute the probabilities of exceeding three limit states (minor, moderate, and extensive). We propose multiple seismic fragility curves as functions of a single ground motion parameter and numerous seismic fragility surfaces as functions of two ground motion parameters. The results show that soil type, slope angle, and input ground motion influence these probabilities, and are expected to help regional authorities and engineers assess the seismic fragility of fill slopes in the road systems in South Korea.

Seismic assessment of existing r.c. framed structures with in-plan irregularity by nonlinear static methods

  • Bosco, Melina;Ferrara, Giovanna A.F.;Ghersi, Aurelio;Marinoc, Edoardo M.;Rossi, Pier Paolo
    • Earthquakes and Structures
    • /
    • v.8 no.2
    • /
    • pp.401-422
    • /
    • 2015
  • This paper evaluates the effectiveness of three nonlinear static methods for the prediction of the dynamic response of in-plan irregular buildings. The methods considered are the method suggested in Eurocode 8, a method previously proposed by some of the authors and based on corrective eccentricities and a new method in which two pushover analyses are considered, one with lateral forces applied to the centres of mass of the floors and the other with only translational response. The numerical analyses are carried out on a set of refined models of reinforced concrete framed buildings. The response predicted by the nonlinear static analyses is compared to that provided by nonlinear dynamic analyses. The effectiveness of the nonlinear static methods is evaluated in terms of absolute and interstorey displacements.

Fatigue Damage Assessment for Steel Structures Subjected to Earthquake (지진에 대한 강구조물의 피로손상도 추정법)

  • Song, Jong Keol;Yun, Chung Bang;Lee, Dong Guen
    • Journal of Korean Society of Steel Construction
    • /
    • v.9 no.1 s.30
    • /
    • pp.95-105
    • /
    • 1997
  • Structures subjected to strong seismic excitation may undergo inelastic deformation cycles. The resulting cumulative fatigue damage process reduces the ability of structures and components to withstand seismic loads. Yet, the present earthquake resistance design methods focus mainly on the maximum displacement ductility, ignoring the effect of the cyclic responses. The damage parameters closely related to the cumulative damage need to be properly reflected on the aseismic design methods. In this study, two cumulative damage assessment methods derived from the plastic fatigue theory are investigated. The one is based on the hysteretic ductility amplitude, and the other is based on the dissipated hysteretic energy. Both methods can consider the maximum ductility and the cyclic behavior of structural response. The validity of two damage methods has been examined for single degree of freedom structures with various natural frequencies against two different earthquake excitations.

  • PDF

Seismic Damage Assessment on Structures using Measured Acceleration (측정가속도를 이용한 구조물의 지진손상평가)

  • 오성호;신수봉
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.216-223
    • /
    • 2003
  • A time-domain system identification (SI) method is developed for seismic damage assessment on structures. SI algorithms for complete measurements with respect to degrees-of-freedom are proposed. To take account of nonlinear dynamic response, an equation error in the incremental dynamic governing equation is defined for complete measurement between measured and computed acceleration. Variations of stiffness and damping parameters during earthquake vibration are chased by utilizing a constrained nonlinear optimization tool available in MATLAB. A simulation study has been carried out to identify damage event and to assess damage severity by using measured acceleration time history. Mass properties are assumed as known a priori. The effects of measurement noise on the identification are also investigated.

  • PDF

Selection of Ground Motions for the Assessment of Liquefaction Potential for South Korea (국내 액상화 평가를 위한 지진파 선정)

  • Jang, Young-Eun;Seo, Hwanwoo;Kim, Byungmin;Han, Jin-Tae;Park, Duhee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.111-119
    • /
    • 2020
  • Recently, some of the most destructive earthquakes have occurred in South Korea since earthquake observations began in 1978. In particular, the soil liquefactions have been reported in Pohang as a result of the ML 5.4 earthquake that occurred in November 2017. Liquefaction-induced ground deformations can cause significant damage to a wide range of buildings and infrastructures. Therefore, it is necessary to take practical steps to ensure safety during an earthquake. In the current seismic design in South Korea, the Hachinohe earthquake and Ofunato earthquake recorded in Japan, along with artificial earthquakes, have been generally used for input motions in dynamic analyses. However, such strong ground motions are only from Japan, and artificial earthquake ground motions are different from real ground motions. In this study, seven ground motions are selected, including those recorded in South Korea, while others are compatible to the current design spectra of South Korea. The effects of the newly selected ground motions on site response analyses and liquefaction analyses are evaluated.