• Title/Summary/Keyword: seismic refraction tomography

Search Result 36, Processing Time 0.028 seconds

Interpretation on the Subsurface Velocity Structure by Seismic Refraction Tomography (탄성파 굴절법 토모그래피를 이용한 지반의 속도분포 해석)

  • Cho, Chang-Soo;Lee, Hee-Il;Suh, Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.5 no.1
    • /
    • pp.6-17
    • /
    • 2002
  • Refraction tomography was developed to interpret subsurface velocity structure easily in topographic conditions. It was applied to synthetic refraction data to find the factors for optimization of applicability of refraction tomography such as configuration of profiling and its length, spacing of geophones and sources and topographic conditions. Also, low velocity layer near VSP hole could be detected by joint inversion with refraction and VSP data. Continuity of subsurface velocity structure in two different spread lines for area of house land development was good in case of applying our algorithm and velocity structure was classified quantitatively to evaluate rippability for engineering works.

Water bottom seismic refraction survey for engineering applications

  • Cha Young Ho;Jo Churl-Hyun
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2003.11a
    • /
    • pp.449-454
    • /
    • 2003
  • The accurate mapping of the basement is one of the most crucial factors in construction of harbour facilities and bridges in the coastal areas. In shallow waters, the seismic reflection method often fails to image the basement geometry beneath the sediment cover in many cases. We present the result of a shallow marine seismic refraction survey using two ships, l2-channel hydrophone arrays deployed on the bottom and a borehole sparker or percussion powder as sources. Velocity structure could be computed by tomography algorithm since more than 6 different source points had been applied for one spread. The comparison of the results of the refraction survey with drilling logs demonstrates remarkable consistency in basement geometry. It thus appears that the refraction method in this study is an efficient and cost-effective way to investigate the basement structure in coastal area, river, and lake.

  • PDF

Analysis on the Reliability and Influence Factors of Refraction Traveltime Tomography Depending on Source-receiver Configuration (송수신기 배열에 따른 굴절 주시 역산의 영향 인자 및 신뢰성 분석)

  • Lee, Donguk;Park, Yunhui;Pyun, Sukjoon
    • Geophysics and Geophysical Exploration
    • /
    • v.20 no.3
    • /
    • pp.163-175
    • /
    • 2017
  • In land seismic exploration, irregular surface topography and weathering layer in near surface distorts the reflected signals of data. Therefore, typical land seismic data should be compensated for this distortion by static correction. To perform the static correction, near-surface velocity is required, which can be obtained by seismic refraction survey. However, land seismic data is often acquired in a limited form of geometry depending on the equipment availability, accessibility condition, and permission for the survey site. In this situation, refraction analysis should be performed using reflection data because it is impossible to acquire refraction-oriented data due to limited source and receiver geometry. In this study, we aimed to analyze the reliability of the results obtained by refraction traveltime tomography when using reflection data with a limited number of sources and receivers from irregular surface topography. By comparing the inversion result from irregular topography with that from flat surface, we found that the surface topography affects the reliability of the inversion results to some degree. We also found that the number of sources has little effect on the inversion results unless the number of sources are very small. On the other hand, we observed that velocity distortion occurred in the overlapped part of receiver arrays when using a limited number of receivers, and therefore suggested the size of the least overlapping ratio to avoid the velocity distortion. Finally, we performed numerical tests for the model which simulates the surface topography and acquisition geometry of the survey region and verified the reliability analysis of inversion results. We identified reliable areas and suspicious area of the inverted velocity model by applying the analysis results to field data.

Joint Inversion of DC Resistivity and Travel Time Tomography Data (전기비저항과 주시 토모그래피 탐사자료의 복합역산)

  • Kim, Jung-Ho;Yi, Myeong-Jong;Park, Kwon-Gyu;Cho, Chang-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.58-63
    • /
    • 2007
  • We developed a new algorithm for jointly inverting dc resistivity and seismic travel time tomography data based on the multiple constraints: (1) structural similarity based on cross-gradient, (2) correlation between two different material properties, and (3) a priori information on the material property distribution. Through the numerical experiments of surface dc resistivity and seismic refraction surveys, the performance of the proposed algorithm was demonstrated and the effects of different regularizations were analyzed.

  • PDF

A Model Study of Processing Methods of Seismic Refraction Data for Mapping Geological Discontinuities - GRM, GLI, Tomography (지질불연속면에 대한 탄성파 굴절법탐사 자료처리 고찰 - GRM, GLI, Tomography)

  • Kim, Ji-Soo;Kim, Su-Hyun;Lee, Jun-Ho;Kim, Won-Ki;Lee, Yong-Jae
    • The Journal of Engineering Geology
    • /
    • v.16 no.4 s.50
    • /
    • pp.327-335
    • /
    • 2006
  • Three processing strategies of seismic refraction data are tested in terms of velocity and depth profiles or structures for mapping of geological discontinuities: GRM(generalized reciprocal method), GLI(generalized linear inversion), Tomography. The test data used in this study are the shot gathers reconstructed by numerical modeling for the structures of 3 planar layers(horizontal, inclined), the buried vertical fracture zones, and vertical fault zones. Tomography is shown to be very efficient for mapping of more complicated tone such as vertical fault and buried fracture zones, whereas GRM and GLI can be useful for horizontal and/or inclined layers, probably on their bases of analysis of first arrivals in travel time curves.

Maximising the lateral resolution of near-surface seismic refraction methods (천부 탄성파 굴절법 자료의 수평 분해능 최대화 연구)

  • Palmer, Derecke
    • Geophysics and Geophysical Exploration
    • /
    • v.12 no.1
    • /
    • pp.85-98
    • /
    • 2009
  • The tau-p inversion algorithm is widely employed to generate starting models with most computer programs, which implement refraction tomography. This algorithm emphasises the vertical resolution of many layers, and as a result, it frequently fails to detect even large lateral variations in seismic velocities, such as the decreases which are indicative of shear zones. This study demonstrates the failure of the tau-p inversion algorithm to detect or define a major shear zone which is 50m or 10 stations wide. Furthermore, the majority of refraction tomography programs parameterise the seismic velocities within each layer with vertical velocity gradients. By contrast, the Generalized Reciprocal Method (GRM) inversion algorithms emphasise the lateral resolution of individual layers. This study demonstrates the successful detection and definition of the 50m wide shear zone with the GRM inversion algorithms. The existence of the shear zone is confirmed by a 2D analysis of the head wave amplitudes and by numerous closely spaced orthogonal seismic profiles carried out as part of a later 3D refraction investigation. Furthermore, an analysis of the shot record amplitudes indicates that a reversal in the seismic velocities, rather than vertical velocity gradients, occurs in the weathered layers. The major conclusion reached in this study is that while all seismic refraction operations should aim to provide as accurate depth estimates as is practical, those which emphasise the lateral resolution of individual layers generate more useful results for geotechnical and environmental applications. The advantages of the improved lateral resolution are obtained with 2D traverses in which the structural features can be recognised from the magnitudes of the variations in the seismic velocities. Furthermore, the spatial patterns obtained with 3D investigations facilitate the recognition of structural features such as faults which do not display any intrinsic variation or 'signature' in seismic velocities.

Rock Quality using Seismic Tomography in Deep Tunnel Depths (대심도 탄성파 토모그래피 탐사를 이용한 암반분류)

  • Koo, Ja-Kab;Kim, Young-Duck;Kwon, So-Jin
    • Journal of the Korean GEO-environmental Society
    • /
    • v.3 no.3
    • /
    • pp.5-13
    • /
    • 2002
  • In tunnel design, geotechnical survey of over 200m tunnel depth is required because of its characteristical topography. For this reason, there are difficulties in collecting information of basic data in tunnel design because of large-scale costs in borehole tests, of limits to a geotechnical analysis by the existing refraction seismic survey and of analytical errors in steep mountainous area. Seismic tomography has many advantages as follows; 1) seismic velocity as absolute value is more reliable than electrical resistivity, 2) geotechnical analysis in deep tunnel depth is available by seismic velocity, 3) analytical errors is reduced in steep mountainous area. In this paper, it was found out a correlation of seismic velocity and Q in tunnel design in the neighborhood of the National Capital region and the reduction effect of tunnel construction cost using reliable rock quality by seismic tomography compared with by borehole data and electricity resistivity data.

  • PDF

Seismic refraction tomographic inversion using the initial velocity model from marine reflection data (해양 반사법 탐사자료의 초기속도 모델을 이용한 굴절 토모그래피 역산)

  • Lee, Yong-Jae;Kim, Won-Sik;Lee, Ho-Young;Yoo, Dong-Geun;Cho, Chang-Soo;Kim, Ji-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2007.06a
    • /
    • pp.317-322
    • /
    • 2007
  • Seismic exploration is divided by reflection and refraction method greatly, and reflection method can analyze complicated underground structure in the basis high resolution image, and refraction method can grasp the velocity structure of underground accurately. This thesis confirmed application of mixed exploration techniques using advantages of reflection and refraction. Reflection data processing applied conventional technique, and inversion of refraction data applied travel time tomographic technique that using SIRT method. Also, could establish initial information in model variable and improved the result of inversion by restricting model parameter value and dimension of area. Confirmed efficient fact in sequence and velocity structure grasping by utilizing accurate initial velocity model made out on the basis of marine reflection data, and mixed exploration technique using reflection and refraction have propriety that can trust in field application.

  • PDF

Three-dimensional Seismic Refraction Travel Time Tomography for Dipping Two Layers (경사 2층 구조를 위한 3차원 굴절탄성파 주시 토모그래피)

  • Cho Dong-heng;Cho Kwang-ho
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.19-24
    • /
    • 1998
  • This paper deals with tomographic travel time inversion of three dimensional seismic refraction survey conducted over a dipping interface. The slowness, and thus velocity as its reciprocal, distribution on the subsurface interface is to be determined applying an ART with under-relaxtion parameter. The models chosen are realistic, i.e., most likely to be met in engineering seismics, and the interface includes anomalous zones. It is found that, generally speaking, the inversion could be misleading or meaningless without the correction of the dip of the interface. This is rather surprising when we recall that usual assumption for the interpretation of refraction seismics data is the horizontal attitude of structures within the limit of $15^{\circ}$ dip or so. To make the present method tenable for a new means of routine seismics, some practical ways of identifying head wave arrivals are to be devised.

  • PDF

Case Study on the Seismic Refraction Survey in a Subsidence Area (지반침하지역에서의 탄성파 굴절법 탐사 적용사례)

  • Yun, Sang-Ho;Ji, Jun;Lee, Doo-Sung
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.577-584
    • /
    • 2000
  • Seismic refraction survey was peformed for 10 lines along NE-SW and NW-SE directions above Nampoong gallery at Makyo-ri, Dogye, Samcheok, Kangwon-do. 48 geophones were laid in line with the interval of 1m, and a 5Kg hammer was used as a source at 5 points for each line. Data processing was done using reciprocal time method, GRM, and traveltime tomography which utilizes wavefront expansion method for forward process and SIRT for inversion. The result shows that the first layer has its lower boundary between 3.49m and 8.88m. The P-wave velocity of the first and the second layer were estimated as 270 360m/s and 1550 1940m/s respectively. When the boundary of the first and second layer is smooth enough and the velocity difference is large enough, GRM has little advantage over reciprocal time method. The result of reciprocal method and traveltime tomography shows consistency. The northeast part of the boundary has syncline structure, which is similar to the topography above. This implies that the collapse of the cavities of Nampoong gallery result in the subsidence of the ground surface. The subsidence is in progress across the Youngdong railroad, therefore a proper reinforcement work is required.

  • PDF