• Title/Summary/Keyword: seismic reduction

검색결과 528건 처리시간 0.022초

Evaluation of seismic reliability and multi level response reduction factor (R factor) for eccentric braced frames with vertical links

  • Mohsenian, Vahid;Mortezaei, Alireza
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.537-549
    • /
    • 2018
  • Using vertical links in eccentric braced frames is one of the best passive structural control approaches due to its effectiveness and practicality advantages. However, in spite of the subject importance there are limited studies which evaluate the seismic reliability and response reduction factor (R-factor) in this system. Therefore, the present study has been conducted to improve the current understanding about failure mechanism in the structural systems equipped with vertical links. For this purpose, following definition of demand and capacity response reduction factors, these parameters are computed for three different buildings (4, 8 and 12 stories) equipped with this system. In this regards, pushover and incremental dynamic analysis have been employed, and seismic reliability as well as multi-level response reduction factor according to the seismic demand and capacity of the frames have been derived. Based on the results, this system demonstrates high ductility and seismic energy dissipation capacity, and using the response reduction factor as high as 8 also provides acceptable reliability for the frame in the moderate and high earthquake intensities. This system can be used in original buildings as lateral load resisting system in addition to seismic rehabilitation of the existing buildings.

보라매 대교빌딩 리모델링을 위한 지진응답 저감기술 적용사례 (Application of the Seismic Response Reduction Technology for Boramae Deokyo Building Remodeling)

  • 박영미;박기홍;조성준
    • 한국건축시공학회:학술대회논문집
    • /
    • 한국건축시공학회 2013년도 추계 학술논문 발표대회
    • /
    • pp.134-136
    • /
    • 2013
  • In general, the seismic retrofit is almost essential to extend and remodel aged buildings. Because domestic seismic design code has been enhanced, seismic performance should be secure for aged building remodeling. Seismic response reduction device (damper) is lately appling to ensure seismic performance. This device is economical efficiency method that can reduce the load to foundation and the range of structural reinforcements, shorten of construction period. New shaped steel damper was applied for extension and remodeling construction for Boramae Deakyo building. As a result, the economy and shortening of construction period was achieved.

  • PDF

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • 제2권1호
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

Seismic analysis of half-through steel truss arch bridge considering superstructure

  • Li, Ruiqi;Yuan, Xinzhe;Yuan, Wancheng;Dang, Xinzhi;Shen, Guoyu
    • Structural Engineering and Mechanics
    • /
    • 제59권3호
    • /
    • pp.387-401
    • /
    • 2016
  • This paper takes a half-through steel truss arch bridge as an example. A seismic analysis is conducted with nonlinear finite element method. Contrast models are established to discuss the effect of simplified method for main girder on the accuracy of the result. The influence of seismic wave direction and wave-passage on seismic behaviors are analysed as well as the superstructure and arch ring interaction which is mostly related with the supported bearings and wind resistant springs. In the end, the application of cable-sliding aseismic devices is discussed to put forward a layout principle. The main conclusions include: (1) The seismic response isn't too distinctive with the simplified method of main girder. Generally speaking, the grillage method is recommended. (2) Under seismic input from different directions, arch foot is usually the mostly dangerous section. (3) Vertical wave input and horizontal wave-passage greatly influence the seismic responses of arch ring, significantly increasing that of midspan. (4) The superstructure interaction has an obvious impact on the seismic performance. Half-through arch bridges with long spandrel columns fixed has a less response than those with short ones fixed. And a large stiffness of wind resistant spring makes the the seismic responses of arch ring larger. (5) A good isolation effectiveness for half-through arch bridge can be achieved by a reasonable arrangement of CSFABs.

Estimation of response reduction factor of RC frame staging in elevated water tanks using nonlinear static procedure

  • Lakhade, Suraj O.;Kumar, Ratnesh;Jaiswal, Omprakash R.
    • Structural Engineering and Mechanics
    • /
    • 제62권2호
    • /
    • pp.209-224
    • /
    • 2017
  • Elevated water tanks are considered as important structures due to its post-earthquake requirements. Elevated water tank on reinforced concrete frame staging is widely used in India. Different response reduction factors depending on ductility of frame members are used in seismic design of frame staging. The study on appropriateness of response reduction factor for reinforced concrete tank staging is sparse in literature. In the present paper a systematic study on estimation of key components of response reduction factors is presented. By considering the various combinations of tank capacity, height of staging, seismic design level and design response reduction factors, forty-eight analytical models are developed and designed using relevant Indian codes. The minimum specified design cross section of column as per Indian code is found to be sufficient to accommodate the design steel. The strength factor and ductility factor are estimated using results of nonlinear static pushover analysis. It was observed that for seismic design category 'high' the strength factor has lesser contribution than ductility factor, whereas, opposite trend is observed for seismic design category 'low'. Further, the effects of staging height and tank capacity on strength and ductility factors for two different seismic design categories are studied. For both seismic design categories, the response reduction factors obtained from the nonlinear static analysis is higher than the code specified response reduction factors. The minimum dimension restriction of column is observed as key parameter in achieving the desired performance of the elevated water tank on frame staging.

물량저감 중공 철근콘크리트 교각의 성능평가를 위한 비선형 지진해석 (Nonlinear Seismic Analysis for Performance Assessment of Hollow RC Bridge Columns with Reinforcement Details for Material Quantity Reduction)

  • 김태훈;이승훈
    • 한국지진공학회논문집
    • /
    • 제18권5호
    • /
    • pp.221-230
    • /
    • 2014
  • The purpose of this study is to investigate the seismic performance of hollow RC bridge columns with reinforcement details for material quantity reduction. The proposed reinforcement details provide economy, are rational and shorthen the construction periods. The accuracy and objectivity of the assessment process can be enhanced by using a sophisticated nonlinear finite element analysis program. Solution of the equations of motion is obtained by numerical integration using Hilber-Hughes-Taylor (HHT) algorithm. The adopted numerical method gives a realistic prediction of seismic performance throughout the input ground motions for several test specimens investigated. As a result, the proposed reinforcement details for material quantity reduction develop equal performance to that required for existing reinforcement details.

Application of Energy Dissipation Technology in High-Rise Buildings

  • Hu, Da-Zhu;Zhang, Xiao-Xuan;Li, Guo-Qiang;Sun, Fei-Fei;Jin, Hua-Jian
    • 국제초고층학회논문집
    • /
    • 제10권2호
    • /
    • pp.137-147
    • /
    • 2021
  • The principle of energy dissipation technology is to dissipate or absorb the seismic energy input through the deformation or velocity change of dampers installed in the main structure of high-rise buildings, so as to reduce the seismic response of the buildings. With the development of energy dissipation technology, recognized as an effective and new measurement for reducing seismic effects, its application in high-rise buildings has become more and more popular. The appropriate energy dissipation devices suitable for high-rise buildings are introduced in this paper. The effectiveness of energy-dissipation technology for reducing the seismic response of high-rise buildings with various structural forms is demonstrated with a number of actual examples of high-rise buildings equipped with various energy dissipation devices.

Global seismic damage assessment of high-rise hybrid structures

  • Lu, Xilin;Huang, Zhihua;Zhou, Ying
    • Computers and Concrete
    • /
    • 제8권3호
    • /
    • pp.311-325
    • /
    • 2011
  • Nowadays, many engineers believe that hybrid structures with reinforced concrete central core walls and perimeter steel frames offer an economical method to develop the strength and stiffness required for seismic design. As a result, a variety of such structures have recently been applied in actual construction. However, the performance-based seismic design of such structures has not been investigated systematically. In the performance-based seismic design, quantifying the seismic damage of complete structures by damage indices is one of the fundamental issues. Four damage states and the final softening index at each state for high-rise hybrid structures are suggested firstly in this paper. Based on nonlinear dynamic analysis, the relation of the maximum inter-story drift, the main structural characteristics, and the final softening index is obtained. At the same time, the relation between the maximum inter-story drift and the maximum roof displacement over the height is also acquired. A double-variable index accounting for maximum deformation and cumulative energy is put forward based on the pushover analysis. Finally, a case study is conducted on a high-rise hybrid structure model tested on shaking table before to verify the suggested quantities of damage indices.

고강도강 내진성능 향상부재를 적용한 건물 성능 비교 (Examination of Seismic Performance for Structure with Seismic Members made by High Strength Steel)

  • 김문정;하태욱;조석희
    • 한국강구조학회 논문집
    • /
    • 제27권3호
    • /
    • pp.281-288
    • /
    • 2015
  • 댐퍼를 비롯한 대부분의 내진성능 향상 부재는 골조를 구성하는 주요구조부재가 소성상태에 진입한 다음 나타나는 층 강성 저하에 대한 대처가 없어 대지진 시 건물의 층 파괴를 방지하지 못할 가능성이 높다. 이에 본 논문은 건물의 주요부재가 탄성항복한 뒤에도 건물의 층 강성을 일정기간 유지시킬 수 있는 고강도강 내진성능 향상부재를 제안한다. 본 논문에서는 다음과 같은 사실을 알 수 있다. (1) 골조의 소성화 항복 후 저감된 수평내력을 보강하는 탄성 부재를 제안방식으로 설계 시 기존 면적을 방해하지 않는 작은 단면으로 최대 층간변형각 0.02rad 까지 내력 저감 보강 가능 (2) 제안 내진성능 향상부재의 최저 적용으로도 설계 레벨을 상회하는 거대 지진에서 과다변형집중방지에 상당한 효과를 발휘하는 것을 확인.

Overview of Performance-Based Seismic Design of Building Structures in China

  • Li, Guo-Qiang;Xu, Yan-Bin;Sun, Fei-Fei
    • 국제초고층학회논문집
    • /
    • 제1권3호
    • /
    • pp.169-179
    • /
    • 2012
  • The development history, the current situation and the future of the performance-based seismic design of building structures in China are presented in this paper. Firstly, the evolution of performance-based seismic design of building structures specified in the Chinese codes for seismic design of buildings of the edition 1974, 1978, 1989, 2001 and 2010 are introduced and compared. Secondly, in two parts, this paper details the provisions of performance-based seismic design in different Chinese codes. The first part is about the "Code for Seismic Design of Buildings" (GB50011) (edition 1989, 2001 and 2010) and "Technical Specification for Concrete Structures of Tall Building", which presents the concepts and methods of performance-based seismic design adopted in Chinese codes; The second part is about "Management Provisions for Seismic Design of Outof-codes High-rise Building Structures" and "Guidelines for Seismic Design of Out-of-codes High-rise Building Structures", which concludes the performance-based seismic design requirements for high-rise building structures over the relevant codes in China. Finally, according to those mentioned above, this paper pointed out the imperfections of current performance-based seismic design in China and proposed the possible direction for further improvement.