• Title/Summary/Keyword: seismic performance levels

Search Result 235, Processing Time 0.022 seconds

Performance of reinforced concrete moment resisting frames in Sarpol-e Zahab earthquake (November 12, 2017, Mw=7.3), Iran

  • Mohammad Amir Najafgholipour;Mehrdad Khajepour
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.1-13
    • /
    • 2023
  • Reinforced concrete (RC) moment frames are used as lateral seismic load resisting systems in mid- and high-rise buildings in different regions of the world. Based on the seismic design provisions and construction details presented in design codes, RC frames with different levels of ductility (ordinary, intermediate, and special) can be designed and constructed. In Iran, there are RC buildings with various uses which have been constructed based on different editions of design codes. The seismic performance of RC structures (particularly moment frames) in real seismic events is of great importance. In this paper, the observations made on damaged RC moment frames after the destructive Sarpol-e Zahab earthquake with a moment magnitude of 7.3 are reported. Different levels of damage from the development of cracks in the structural and non-structural elements to the total collapse of buildings were observed. Furthermore, undesirable failure modes which are not expected in ductile seismic-resistant buildings were frequently observed in the damaged buildings. The RC moment frames built based on the previous editions of the design codes showed partial or total collapse in this seismic event. The extensive destruction of RC moment frames compared with the other structural systems (such as braced steel frames and confined masonry buildings) was attributed not only to the deficiencies in the construction practice of these buildings but also to the design procedure. In addition, the failure and collapse of masonry infills in RC moment frames were frequent modes of failure in this seismic event. In this paper, the main reasons related to design practice which led to extensive damage in the RC moment frames and their collapse are addressed.

Triaxial Shake Table Test about Seismic Performance of Ceiling System with Gypsum Panels (석고 패널이 부착된 천장 시스템의 내진성능 평가를 위한 3축 진동실험)

  • Park, Hae-Yong;Jeon, Bub-Gyu;Kim, Jae-Bong;Gim, Min-Uk
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.10
    • /
    • pp.143-153
    • /
    • 2019
  • In this study, a full scale 3-axes shake table test for M-bar and T-bar type ceilings commonly used in the country was conducted. Through damage inspection during the test, seismic performance of ceilings according to variables, such as clearance between wall mold and ceiling as well as existence of facilities, was evaluated. A test frame consisted of square hollow section members was used for the shake table test. The experimental method was performed as a fragility test using required response spectrum described in ICC-ES AC156. In the case of architectural nonstructural component that contain ceilings, it mainly is evaluated the performance by post-test visual inspection. For the evaluation of seismic performance of ceilings, this study classified and defined damaged items for targeted ceiling system referring to illustrative damage according to nonstructural performance levels accordance with ASCE 41 and previous studies. And proposed illustrative damage items classification was utilized to compare the degree of the damage according to experimental variables. The experiment results confirmed that differences in boundary conditions due to the clearance at wall mold and the installation of facilities had a significant effect on the seismic performance of the ceiling.

Seismic performance of ductile and non-ductile reinforced concrete columns under varied axial compression

  • Safdar-Naveed Amini;Aditya-Singh Rajput
    • Structural Engineering and Mechanics
    • /
    • v.91 no.5
    • /
    • pp.427-441
    • /
    • 2024
  • Large-scale cantilever reinforced concrete (RC) columns with footing/stub were examined to determine their seismic response under a quasi-static increasing-magnitude cyclic lateral loading. Three-dimensional (3D) numerical models of RC columns with ductile and non-ductile reinforcement arrangements were developed in a Finite Element (FE) software, i.e., ABAQUS, to corroborate them with the experimental study conducted by the author. Both simulated models were validated with the experimental results in all respects, and the theoretical axial capacity of columns under concentric axial load (P0) was calculated. Subsequently, a detailed parametric study was conducted by adopting the force and reinforcement variables. These variables include axial compression ratios (ACR) varying from 0.35P0 to 0.7P0 and the amount of lateral reinforcements taken as 0.33% and 1.31% representing the non-ductile and ductile columns, respectively. This research outcome conclusively quantifies the combined effect of ACR levels and lateral reinforcement spacing on the flexural response and ductility characteristics of RC columns. The comparative analysis reveals that increased ACR levels resulted in a severe reduction in strength, deformability and ductility characteristics of both ductile and non-ductile columns. Structural response of ductile columns at higher ACR levels was comparable to the non-ductile columns, nullifying the beneficial effects of ductile design provisions. Higher ACR levels caused decline in pre-peak and post-peak response trajectories, leading to an earlier attainment of peak response at lower drift levels.

Evaluating effects of various water levels on long-term creep and earthquake performance of masonry arch bridges using finite difference method

  • Cavuslu, Murat
    • Geomechanics and Engineering
    • /
    • v.31 no.1
    • /
    • pp.31-52
    • /
    • 2022
  • Investigating and evaluating the long-term creep behavior of historical buildings built on seismic zones is of great importance in terms of transferring these structures to future generations. Furthermore, assessing the earthquake behavior of historical structures such as masonry stone bridges is very important for the future and seismic safety of these structures. For this reason, in this study, earthquake analyses of a masonry stone bridge are carried out considering strong ground motions and various water levels. Tokatli masonry stone arch bridge that was built in the 10th century in Turkey-Karabük is selected for three-dimensional (3D) finite difference analyses and this bridge is modeled using FLAC3D software based on the three-dimensional finite difference method. Firstly, each stone element of the bridge is modeled separately and special stiffness parameters are defined between each stone element. Thanks to these parameters, the interaction conditions between each stone element are provided. Then, the Burger-Creep and Drucker-Prager material models are defined to arch material, rockfill material for evaluating the creep and seismic failure behaviors of the bridge. Besides, the boundaries of the 3D model of the bridge are modeled by considering the free-field and quiet boundary conditions, which were not considered in the past for the seismic behavior of masonry bridges. The bridge is analyzed for 6 different water levels and these water levels are 0 m, 30 m, 60 m, 70 m, 80 m, and 90 m, respectively. A total of 10 different seismic analyzes are performed and according to the seismic analysis results, it is concluded that historical stone bridges exhibit different seismic behaviors under different water levels. Moreover, it is openly seen that the water level is of great importance in terms of earthquake safety of historical stone bridges built in earthquake zones. For this reason, it is strongly recommended to consider the water levels while strengthening and analyzing the historical stone bridges.

Modal strength reduction factors for seismic design of plane steel frames

  • Papagiannopoulos, George A.;Beskos, Dimitri E.
    • Earthquakes and Structures
    • /
    • v.2 no.1
    • /
    • pp.65-88
    • /
    • 2011
  • A new method for the seismic design of plane steel moment resisting frames is developed. This method determines the design base shear of a plane steel frame through modal synthesis and spectrum analysis utilizing different values of the strength reduction (behavior) factor for the modes considered instead of a single common value of that factor for all these modes as it is the case with current seismic codes. The values of these modal strength reduction factors are derived with the aid of a) design equations that provide equivalent linear modal damping ratios for steel moment resisting frames as functions of period, allowable interstorey drift and damage levels and b) the damping reduction factor that modifies elastic acceleration spectra for high levels of damping. Thus, a new performance-based design method is established. The direct dependence of the modal strength reduction factor on desired interstorey drift and damage levels permits the control of deformations without their determination and secures that deformations will not exceed these levels. By means of certain seismic design examples presented herein, it is demonstrated that the use of different values for the strength reduction factor per mode instead of a single common value for all modes, leads to more accurate results in a more rational way than the code-based ones.

Response Modification Factors for Seismic Performance Evaluation of Non-seismic School Buildings with Partial Masonry Infills (조적허리벽이 있는 비내진 학교시설의 내진성능평가를 위한 반응수정계수)

  • Kim, Beom Seok;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.71-82
    • /
    • 2019
  • Most school buildings consist of reinforced concrete (RC) moment frames with masonry infills. The longitudinal direction frames of those school buildings are relatively weak due to the short-column effects caused by the partial masonry infills and need to be evaluated carefully. In 'Manual for Seismic Performance Evaluation and Retrofit of School Facilities' published in 2018, response modification factor of 2.5 is applied to non-seismic RC moment frames with partial masonry infills, but sufficient verification of the factor has not been reported yet. Therefore, this study conducted seismic performance evaluation of planar RC moment frames with partial masonry infills in accordance with both linear analysis and nonlinear static analysis procedures presented in the manual. The evaluation results from the different procedures are compared in terms of assessed performance levels and number of members not meeting target performance objectives. Finally, appropriate response modification factors are proposed with respect to a shear-controlled column ratio.

The Experimental Study on Seismic Performance of RC Bridge Columns with Longitudinal Steel Lap Splice (겹침이음 상세에 따른 철근콘크리트 교각의 내진성능에 관한 실험적 연구)

  • 석상근;손혁수;정철호;이재훈
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2001.05a
    • /
    • pp.553-558
    • /
    • 2001
  • Recent destructive seismic events demonstrated the importance of mitigating human casualties and serious property damages in design and construction of structures. The Korean Bridge Design Specifications (1992) adopted seismic design requirements based on the AASHTO specification, and minor modification was made in 2000. The longitudinal steel connection of reinforced concrete bridge column is sometimes practically unavoidable. The longitudinal reinforcement details affect seismic performance such as flexural failure and shear failure. This research aims to develop longitudinal steel connection details with confinement steel by experimental study for seismic performance of reinforced concrete bridge columns. Quasi-static test under three different axial load levels was conducted for 12 spiral column specimens. All the column specimens had the same aspect ratio of 3.5. The column specimens were transversely reinforced with spiral and with five different longitudinal steel connection. The final objective of this study is to suggest appropriate longitudinal reinforcement connection details for the limited ductility design concept and improve construction quality.

  • PDF

Seismic Performance and Retrofit of Circular Bridge Piers with Spliced Longitudinal Steel

  • Chung, Young-Soo;Lee, Jae-Hyung
    • KCI Concrete Journal
    • /
    • v.14 no.3
    • /
    • pp.130-137
    • /
    • 2002
  • It is known that lap splice in the longitudinal reinforcement of reinforced concrete(RC) bridge columns is not desirable for seismic performance, but it is sometimes unavoidable. Lap splices were practically located in the potential plastic hinge region of most bridge columns that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification on 1992. The objective of this research is to evaluate the seismic performance of reinforced concrete(RC) bridge piers with lap splicing of longitudinal reinforcement in the plastic hinge region, to develop the enhancement scheme of their seismic capacity by retrofitting with glassfiber sheets, and to develop appropriate limited ductility design concept in low or moderate seismicity region. Nine test specimens in the aspect ratio of 4 were made with three confinement ratios and three types of lap splice. Quasi-static test was conducted in a displacement-controlled way under three different axial load levels. A significant reduction of displacement ductility ratios was observed for test columns with lap splices of longitudinal steels.

  • PDF

Comparative study on retrofitting strategies for residential buildings after earthquakes

  • Yang, Mengqi;Zhang, Chi
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.375-389
    • /
    • 2019
  • During earthquakes, the performance of structures needs to be evaluated, which provides guidance for selecting suitable retrofitting schemes. The purpose of this paper is to accomplish seismic assessment of a simple steel residential building. Once the responses of the system are determined, the scope of the study extends to evaluate selected retrofitting strategies that are intended to rehabilitate the flaws of the structure under prescribed ground motions with high probability of occurrence at the site. After implementing the retrofits, seismic assessment of the upgraded structure is carried out to check if the remediation at various seismic performance levels is acquired or not. Outcomes obtained from retrofitted scenarios are compared to the results obtained from the initial un-retrofitted configuration of the structure. This paper presents the process for optimal selection of rehabilitation solutions considering the cost of implementation, downtime and disruption to property owners while improving the seismic performance level of the structure.

Towards New Generation of Seismic Design Methodologies for Performance-based Design (성능기초설계를 위한 차세대 내진설계의 방향)

  • 홍성걸;김남희;장승필
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.09a
    • /
    • pp.276-283
    • /
    • 2001
  • Performance-based design concepts require the next generation of codes. To implement the main concepts several design methodologies have been proposed. This paper reviews the framework of Korea Seismic Code and shows necessary modification for adoption of appropriate design methods. The selection of design earthquake levels with the introduction of risk factor is discussed for proper risk levels for all earthquake hazards. Displacement-based design, energy-based design, comprehensive design, and force-strength design methods are reviewed as one of possible next generation design methods. This paper proposes the direction of reconstruction for design earthquake levels with performance matrix, introduction of new design methods, and emphasis on non- structural components.

  • PDF