• Title/Summary/Keyword: seismic performance and design

Search Result 1,416, Processing Time 0.038 seconds

A Comparative Case Study of 2016 Gyeongju and 2011 Virginia Earthquakes (2016년 경주지진과 2011년 미국 버지니아지진에 대한 비교 연구 및 사례 분석)

  • Kang, Thomas H.K.;Jeong, Seung Yong;Kim, Sanghee;Hong, Seongwon;Choi, Byong Jeon
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.7_spc
    • /
    • pp.443-451
    • /
    • 2016
  • A Gyeongju earthquake in the magnitude of 5.8 on the Richter scale (the moment magnitude of 5.4), which was recorded as the strongest earthquake in Korea, occurred in September 12, 2016. Compared with the 2011 Virginia earthquake, the moment magnitude was slightly smaller and its duration was 3 seconds, much shorter than 10 seconds of the Virginia earthquake, resulting in relatively minor damage. But the two earthquakes are quite similar in terms of the overall scale, unexpectedness, and social situation. The North Anna Nuclear Power Plant, which is a nuclear power plant located at 18 km away from the epicenter of the Virginia earthquake, had no damage to nuclear reactors because the reactors were automatically shut down as the design basis earthquake value was exceeded. Ground accelerations of the 2016 Gyeongju earthquake did not exceed the threshold value but the manual shutdown was carried out so that Wolsong Nuclear Power Site was not damaged. Damaged historic homestead house and masonry structures due to the Virginia earthquake have been repaired, reinforced, and rebuilt based on a long-term earthquake recovery project. Likewise, it will be necessary to carefully carry out an earthquake recovery planning program to improve overall seismic performance and to reconstruct the historic buildings and structures damaged as a result of the Gyeongju earthquake.

Numerical Study on the Behavior of Ground and Structure in Geosynthetic-Reinforced Soil (GRS) Integral Bridges

  • Sim, Youngjong;Jin, Kyu-Nam;Hong, Eun-Soo;Kim, Hansung;Park, Jun Kyung
    • Land and Housing Review
    • /
    • v.12 no.3
    • /
    • pp.97-108
    • /
    • 2021
  • In bridge abutment structures, lateral squeeze due to lateral stress of embankment placement and thermal movement of the bridge structure leads to failure of approach slabs, girders, and bridge bearings. Recently, GRS (Geosynthetic-Reinforced Soil) integral bridge has been proposed as a new countermeasure. The GRS integral bridge is a combining structure of a GRS retaining wall and an integral abutment bridge. In this study, numerical analyses which considered construction sequences and earthquake loading conditions are performed to compare the behaviors of conventional PSC (Pre-Stressed Concrete) girder bridge, traditional GRS integral bridge structure and GRS integral bridge with bracket structures (newly developed LH-type GRS integral bridge). The analysis results show that the GRS integral bridge with bracket structures is most stable compared with the others in an aspect of stress concentration and deformation on foundation ground including differential settlements between abutment and backfill. Furthermore, the GRS integral bridge with/without bracket structures was found to show the best performance in terms of seismic stability.

Analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers

  • Huang, Xiaogang;Zhou, Zhen;Zhu, Dongping
    • Structural Engineering and Mechanics
    • /
    • v.72 no.3
    • /
    • pp.355-366
    • /
    • 2019
  • Self-centering wall (SCW) is a resilient and sustainable structural system which incorporates unbonded posttensioning (PT) tendons to provide self-centering (SC) capacity along with supplementary dissipators to dissipate seismic energy. Hysteretic energy dissipators are usually placed at two sides of SCWs to facilitate ease of postearthquake examination and convenient replacement. To achieve a good prediction for the skeleton curve of the wall, this paper firstly developed an analytical investigation on lateral load responses of self-centering walls with distributed vertical dampers (VD-SCWs) using the concept of elastic theory. A simplified method for the calculation of limit state points is developed and validated by experimental results and can be used in the design of the system. Based on the analytical results, parametric analysis is conducted to investigate the influence of damper and tendon parameters on the performance of VD-SCWs. The results show that the proposed approach has a better prediction accuracy with less computational effects than the Perez method. As compared with previous experimental results, the proposed method achieves up to 60.1% additional accuracy at the effective linear limit (DLL) of SCWs. The base shear at point DLL is increased by 62.5% when the damper force is increased from 0kN to 80kN. The wall stiffness after point ELL is reduced by 69.5% when the tendon stiffness is reduced by 75.0%. The roof deformation at point LLP is reduced by 74.1% when the initial tendon stress is increased from $0.45f_{pu}$ to $0.65f_{pu}$.

Response transformation factors and hysteretic energy distribution of reinforced concrete braced frames

  • Herian A. Leyva;Eden Bojorquez;Juan Bojorquez;Alfredo Reyes;Fabrizio Mollaioli;Omar Payan;Leonardo Palemon;Manual A. Barraza
    • Structural Engineering and Mechanics
    • /
    • v.90 no.3
    • /
    • pp.313-323
    • /
    • 2024
  • Most of existing buildings in Mexico City are made of reinforced concrete (RC), however, it has been shown that they are very susceptible to narrow-band long duration ground motions. In recent years, the use of dual systems composed by Buckling Restrained Braces (BRB) has increased due to its high energy dissipation capacity under reversible cyclical loads. Therefore, in this work the behavior of RC buildings with BRB is studied in order to know their performance, specifically, the energy distribution through height and response transformation factors between the RC and simplified systems are estimated. For this propose, seven RC buildings with different heights were designed according to the Mexico City Seismic Design Provisions (MCSDP), in addition, equivalent single degree of freedom (SDOF) systems were obtained. Incremental dynamic analyses on the buildings under 30 narrow-band ground motions in order to compute the relationship between normalized hysteretic energy, maximum inter-story drift and roof displacement demands were performed. The results shown that the entire structural frames participate in energy dissipation and their distribution is independent of the global ductility. The results let propose energy distribution equations through height. Finally, response transformation factors between the SDOF and multi degree of freedom (MDOF) systems were developed aimed to propose a new energy-based approach of BRB reinforced concrete buildings.

Evaluation on Structural Safety for Bearing seat according to Replacement of Bridge Bearing (교량받침 교체에 따른 보자리 구조 안전성 평가)

  • Choi, Jung-Youl;Lee, Hee-Kwang;Chung, Jee-Seung
    • The Journal of the Convergence on Culture Technology
    • /
    • v.6 no.4
    • /
    • pp.753-760
    • /
    • 2020
  • In this study, the structural safety of the bearing support was analysed by applying the vertical load (bearing design load) and horizontal load (horizontal force generated during an earthquake) using a precise three-dimensional numerical model. The results of stress and displacement of newly-poured concrete and welded rebars were confirmed numerically. Numerical results show that the increase in the horizontal force and the height of the beam causes the concrete cracking and the stress increase of the rebar connections due to the increase of the stress at the new concrete interface. Therefore, it was analyzed that the increase in the height of bearing support is directly related to the horizontal force and it is necessary to apply the bearing support height appropriate for the bearing support capacity. It was proposed that a method of setting the height of the bearing support suitable for the bearing capacity and determining the reinforcement by presenting the guideline with the correlation between the horizontal force acting on the bearing support and its height.

μ-Synthesis Controller Design and Experimental Verification for a Seismic-excited MDOF Building (지진을 받는 다자유도 건물의 μ합성 제어기 설계 및 검증실험)

  • 민경원;주석준;이영철
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.6 no.6
    • /
    • pp.41-48
    • /
    • 2002
  • This study is on the structural control experiment for a small scale three-story building structure employing on active mass damper subjected to earthquake loading. $\mu$-synthesis controllers, which belong to robust control strategies, were designed and their performance were experimentally verified. Frequency-dependent weighting functions corresponding to disturbance input and controlled output were defined and combined to produce optimal $\mu$-synthesis controllers. The experiment result shows 60-70% reduction in RMS responses under the band-limited white noise excitation and 30-45% reduction in peak responses under the scaled earthquake excitations. Good agreement was obtained between the simulations based on the identified mathematical model and experimental results. And the simulations for the system with uncertainties show that the designed controllers are robust within a specified range of uncertainties.

Verification of Combined Sinusoidal Loads for Simulating Real Earthquakes (실지진 모사를 위한 조합형 정현하중의 적용성 검증)

  • Choi, Jae-soon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.39 no.6
    • /
    • pp.811-819
    • /
    • 2019
  • Since the Gyeongju earthquake in 2016 and the Pohang earthquake in 2017, the performance of various dynamic tests for seismic design has increased in Korea. However, sinusoidal load has been continuously used in the conventional laboratory tests to evaluate liquefaction potential and determine input-parameters in the numerical analysis. However, recent research results suggest that it is difficult to accurately simulate excess pore water changes of the ground under earthquake loads. In order to solve this problem, this study proposes a combined sinusoidal loading and examines its applicability to the cyclic shear and triaxial test. Also, its validity is examined through performing of shaking-table test and numerical analysis based on the effective stress model. As a result, it was found that the proposed combined sinusoidal loading can more accurately simulate the change of excess pore water pressure in saturated soils under real earthquake load than the sinusoidal load.

A Study on the Shape-Decision Technique of Membrane Structures According to the Design Process and Shape Analysis (건축 설계프로세스와 형상해석을 통한 막 구조물의 형상결정 방안에 관한 연구)

  • Park, Sun-Woo;Kim, Seung-Deog;Shon, Su-Deok;Jeong, Eul-Seok
    • Journal of Korean Association for Spatial Structures
    • /
    • v.7 no.2 s.24
    • /
    • pp.115-124
    • /
    • 2007
  • The initial shape is arrived at by a self-formation process, which accomplishes a form in the natural world, or is determined analytically by considering the equilibrium of initial stress only. Therefore, the self-formation process, which accomplishes a form in the natural world is grasped and the types of modeling techniques available to find the shapes of soft structures are well investigated and classified. To establish a form-finding modeling techniques, the models of string, soap film, fabric, rubber, plaster, and etc. are used. These modeling techniques can be used as a method of understanding the characteristics of structures when the material of model shows similar characteristics. Generally, the model test confirms the structure based on numerical analysis, at the same time it is important preceding process to develop such a program. With the above process, the relationship between model test and numerical analysis becomes a feedback process. Therefore, in this study, two examples which have been accomplished from such a technique are investigated and considered according to modeling process.

  • PDF

Hysteretic behaviour of circular tubular T-joints with local chord reinforcement

  • Shao, Y.B.;Wang, Y.M.;Yang, D.P.
    • Steel and Composite Structures
    • /
    • v.21 no.5
    • /
    • pp.1017-1029
    • /
    • 2016
  • When a welded circular hollow section (CHS) tubular joint is subjected to brace axial loading, failure position is located usually at the weld toe on the chord surface due to the weak flexural stiffness of the thin-walled chord. The failure mode is local yielding or buckling in most cases for a tubular joint subjected to axial load at the brace end. Especially when a cyclic axial load is applied, fracture failure at the weld toe may occur because both high stress concentration and welding residual stress along the brace/chord intersection cause the material in this region to become brittle. To improve the ductility as well as to increase the static strength, a tubular joint can be reinforced by increasing the chord thickness locally near the brace/chord intersection. Both experimental investigation and finite element analysis have been carried out to study the hysteretic behaviour of the reinforced tubular joint. In the experimental study, the hysteretic performance of two full-scale circular tubular T-joints subjected to cyclic load in the axial direction of the brace was investigated. The two specimens include a reinforced specimen by increasing the wall thickness of the chord locally at the brace/chord intersection and a corresponding un-reinforced specimen. The hysteretic loops are obtained from the measured load-displacement curves. Based on the hysteretic curves, it is found that the reinforced specimen is more ductile than the un-reinforced one because no fracture failure is observed after experiencing similar loading cycles. The area enclosed by the hysteretic curves of the reinforced specimen is much bigger, which shows that more energy can be dissipated by the reinforced specimen to indicate the advantage of the reinforcing method in resisting seismic action. Additionally, finite element analysis is carried out to study the effect of the thickness and the length of the reinforced chord segment on the hysteretic behaviour of CHS tubular T-joints. The optimized reinforcing method is recommended for design purposes.

Seismic Performance of RC Column-Steel Beam Connections for Large Columns (대형기둥 적용을 위한 철근콘크리트기둥-강재보 접합부의 내진성능)

  • Park, Hong Gun;Lee, Ho Jun;Kim, Chang Soo;Hwang, Hyeon Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.28 no.4
    • /
    • pp.231-242
    • /
    • 2016
  • Earthquake resistance of RC column-steel beam (RCS) joints with simplified details were studied. Simplified details are necessary for large columns to improve the productivity and constructability. To strengthen the beam-column joint, the effects of transverse beams, studs, and U-cross ties were used. Four 2/3 scale interior RCS connections were tested under cyclic lateral loading. The specimens generally exhibited good deformation capacity exceeding 4.0% story drift ratio after yielding of both beam and beam-column joint. Ultimately, the specimens failed by shear mechanism of the joint panel. The test strengths were compared with the predictions of existing design methods.