• 제목/요약/키워드: seismic loading pattern

검색결과 34건 처리시간 0.018초

Quasi-static cyclic displacement pattern for seismic evaluation of reinforced concrete columns

  • Yuksel, E.;Surmeli, M.
    • Structural Engineering and Mechanics
    • /
    • 제37권3호
    • /
    • pp.267-283
    • /
    • 2011
  • Although earthquakes generate random cyclic lateral loading on structures, a quasi-static cyclic loading pattern with gradually increasing amplitude has been commonly used in the laboratory tests because of its relatively low cost and simplicity compared with pseudo-dynamic and shake table tests. The number, amplitudes and sequence of cycles must be chosen appropriately as important parameters of a quasi-static cyclic loading pattern in order to account for cumulative damage matter. This paper aims to reach a new cyclic displacement pattern to be used in quasi-static tests of well-confined, flexure-dominated reinforced concrete (RC) columns. The main parameters of the study are sectional dimensions, percentage of longitudinal reinforcement, axial force intensity and earthquake types, namely, far-fault and near-fault.

Investigations on seismic response of two span cable-stayed bridges

  • Bhagwat, Madhav;Sasmal, Saptarshi;Novak, B.;Upadhyay, A.
    • Earthquakes and Structures
    • /
    • 제2권4호
    • /
    • pp.337-356
    • /
    • 2011
  • In this paper, cable-stayed bridges with single pylon and two equal side spans, with variations in geometry and span ranging from 120 m to 240 m have been studied. 3D models of the bridges considered in this study have been analysed using ANSYS. As the first step towards a detailed seismic analysis, free vibration response of different geometries is studied for their mode shapes and frequencies. Typical pattern of free vibration responses in different frequencies with change in geometry is observed. Further, three different seismic loading histories are chosen with various characteristics to find the structural response of different geometries under seismic loading. Effect of variation in pylon shape, cable arrangement with variation in span is found to have typical characteristics with different structural response under seismic loading. From the study, it is observed that the structural response is very much dependent on the geometry of the cable-stayed bridge and the characteristics of the seismic loading as well. Further, structural responses obtained from the study would help the design engineers to take decisions on geometric shapes of the bridges to be constructed in seismic prone zones.

격자형 유닛 상세를 가진 단면증설공법으로 보강된 철근콘크리트 기둥의 하중가력패턴에 따른 구조성능평가 (An Evaluation of Structural Performance of Reinforced Concrete Column Retrofitted with Grid Type Unit Details of Jacketing Method under Loading Patterns)

  • 문홍비;노경민;이영학
    • 한국공간구조학회논문집
    • /
    • 제22권2호
    • /
    • pp.29-37
    • /
    • 2022
  • The collapse of reinforced concrete (RC) frame buildings is mainly caused by the failure of columns. To prevent brittle failure of RC column, numerous studies have been conducted on the seismic performance of strengthened RC columns. Concrete jacketing method, which is one of the retrofitting method of RC members, can enhance strength and stiffness of original RC column with enlarged section and provide uniformly distributed lateral load capacity throughout the structure. The experimental studies have been conducted by many researchers to analyze seismic performance of seismic strengthened RC column. However, structures which have plan and vertical irregularities shows torsional behavior, and therefore it causes large deformation on RC column when subjected to seismic load. Thus, test results from concentric cyclic loading can be overestimated comparing to eccentric cyclic test results, In this paper, two kinds of eccentric loading pattern was suggested to analyze structural performance of RC columns, which are strengthened by concrete jacketing method with new details in jacketed section. Based on the results, it is concluded that specimens strengthened with new concrete jacketing method increased 830% of maximum load, 150% of maximum displacement and changed the failure modes of non-strengthened RC columns.

Effect of vertical reinforcement connection level on seismic behavior of precast RC shear walls: Experimental study

  • Yun-Lin Liu;Sushil Kumar;Dong-Hua Wang;Dong Guo
    • Earthquakes and Structures
    • /
    • 제26권6호
    • /
    • pp.449-461
    • /
    • 2024
  • The vertical reinforcement connection between the precast reinforced concrete shear wall and the cast-in-place reinforced concrete member is vital to the performance of shear walls under seismic loading. This paper investigated the structural behavior of three precast reinforced concrete shear walls, with different levels of connection (i.e., full connection, partial connection, and no connection), subjected to quasi-static lateral loading. The specimens were subjected to a constant vertical load, resulting in an axial load ratio of 0.4. The crack pattern, failure modes, load-displacement relationships, ductility, and energy dissipation characteristics are presented and discussed. The resultant seismic performances of the three tested specimens were compared in terms of skeleton curve, load-bearing capacity, stiffness, ductility, energy dissipation capacity, and viscous damping. The seismic performance of the partially connected shear wall was found to be comparable to that of the fully connected shear wall, exhibiting 1.7% and 3.5% higher yield and peak load capacities, 9.2% higher deformability, and similar variation in stiffness, energy dissipation capacity and viscous damping at increasing load levels. In comparison, the seismic performance of the non-connected shear wall was inferior, exhibiting 12.8% and 16.4% lower loads at the yield and peak load stages, 3.6% lower deformability, and significantly lower energy dissipation capacity at lower displacement and lower viscous damping.

Optimal distribution of steel plate slit dampers for seismic retrofit of structures

  • Kim, Jinkoo;Kim, Minjung;Eldin, Mohamed Nour
    • Steel and Composite Structures
    • /
    • 제25권4호
    • /
    • pp.473-484
    • /
    • 2017
  • In this study a seismic retrofit scheme for a building structure was presented using steel plate slit dampers. The energy dissipation capacity of the slit damper used in the retrofit was verified by cyclic loading test. Genetic algorithm was applied to find out the optimum locations of the slit dampers satisfying the target displacement. The seismic retrofit of the model structure using the slit dampers was compared with the retrofit with enlarging shear walls. A simple damper distribution method was proposed using the capacity spectrum method along with the damper distribution pattern proportional to the inter-story drifts. The validity of the simple story-wise damper distribution procedure was verified by comparing the results of genetic algorithm. It was observed that the capacity-spectrum method combined with the simple damper distribution pattern leaded to satisfactory story-wise distribution of dampers compatible with the optimum solution obtained from genetic algorithm.

Seismic behavior of steel reinforced concrete (SRC) joints with new-type section steel under cyclic loading

  • Wang, Qiuwei;Shi, Qingxuan;Tian, Hehe
    • Steel and Composite Structures
    • /
    • 제19권6호
    • /
    • pp.1561-1580
    • /
    • 2015
  • No significant improvement has been observed on the seismic performance of the ordinary steel reinforced concrete (SRC) columns compared with the reinforced concrete (RC) columns mainly because I, H or core cross-shaped steel cannot provide sufficient confinement for core concrete. Two improved SRC columns by constructing with new-type section steel were put forward on this background: a cross-shaped steel whose flanges are in contact with concrete cover by extending the geometry of webs, and a rotated cross-shaped steel whose webs coincide with diagonal line of the column's section. The advantages of new-type SRC columns have been proved theoretically and experimentally, while construction measures and seismic behavior remain unclear when the new-type columns are joined onto SRC beams. Seismic behavior of SRC joints with new-type section steel were experimentally investigated by testing 5 specimens subjected to low reversed cyclic loading, mainly including the failure patterns, hysteretic loops, skeleton curves, energy dissipation capacity, strength and stiffness degradation and ductility. Effects of steel shape, load angel and construction measures on seismic behavior of joints were also analyzed. The test results indicate that the new-type joints display shear failure pattern under seismic loading, and steel and concrete of core region could bear larger load and tend to be stable although the specimens are close to failure. The hysteretic curves of new-type joints are plumper whose equivalent viscous damping coefficients and ductility factors are over 0.38 and 3.2 respectively, and this illustrates the energy dissipation capacity and deformation ability of new-type SRC joints are better than that of ordinary ones with shear failure. Bearing capacity and ductility of new-type joints are superior when the diagonal cross-shaped steel is contained and beams are orthogonal to columns, and the two construction measures proposed have little effect on the seismic behavior of joints.

Seismic performance of precast joint in assembled monolithic station: effect of assembled seam shape and position

  • Liu, Hongtao;Du, Xiuli
    • Earthquakes and Structures
    • /
    • 제17권6호
    • /
    • pp.611-621
    • /
    • 2019
  • Precast concrete structure has many advantages, but the assembled seam will affect potentially the overall seismic performance of structure. Based on the sidewall joint located in the bottom of assembled monolithic subway station, the main objectives of this study are, on one hand to present an experimental campaign on the seismic behavior of precast sidewall joint (PWJ) and cast-in-place sidewall joint (CWJ) subjected to low-cycle repeated loading, and on the other hand to explore the effect of shape and position of assembled seam on load carrying capacity and crack width of precast sidewall joint. Two full-scale specimens were designed and tested. The important index of failure pattern, loading carrying capacity, deformation performance and crack width were evaluated and compared. Based on the test results, a series of different height and variably-shape of assembled seam of precast sidewall joint were considered. The test and numerical investigations indicate that, (1) the carrying capacity and deformation capacity of precast sidewall and cast-in-place sidewall were very similar, but the crack failure pattern, bending deformation and shearing deformation in the plastic hinge zone were different obviously; (2) the influence of the assembled seam should be considered when precast underground structures located in the aquifer water-bearing stratum; (3) the optimal assembled seam shape and position can be suggested for the design of precast underground concrete structures according to the analysis results.

원형 실물 철근 콘크리트 교각의 철근 상세에 따른 내진성능 평가 (Seismic Performance Evaluation of Circular RC Bridge Piers with Various Steel Type)

  • 정영수;박진영;이재훈;조대연;이대형
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2001년도 가을 학술발표회 논문집
    • /
    • pp.965-970
    • /
    • 2001
  • The object of this research is to evaluate the seismic performance of existing RC bridge piers that were constructed before the adoption of the seismic design provision of Korea Bridge Design Specification in 1992. In this research, adopted test parameters were limited ductile design or non-seismic design, aspect ratio, confinement steel type, loading pattern, lap-spliced ratio for longitudinal reinforcement. This study has been performed to verify the effect of test parameter by quasi-static test. Quasi-static test has been done to investigate the physical seismic performance of RC bridge piers, such as lateral force-displacement hysteretic curve, envelope curve etc. It has been observed that seismic performance of lap-spliced test specimen, non-seismically designed specimens, was significantly reduced.

  • PDF

Seismic performance of Bujian Puzuo considering scale ratio and vertical load effects

  • Yong-Hui Jiang;Jun-Xiao He;Lei Zhu;Lin-Lin Xie;Shuo Fang
    • Structural Engineering and Mechanics
    • /
    • 제90권5호
    • /
    • pp.447-458
    • /
    • 2024
  • This study investigated the influence of scale ratio and vertical load on the seismic performance of Puzuo joints in traditional Chinese timber structures. Three low-cyclic reversed loading tests were conducted on three scaled specimens of Bujian Puzuo in Yingxian Wooden Pagoda. This study focused on the deformation patterns and analyzed seismic performance under varying scale ratios and vertical loads. The results indicated that the slip and rotational deformations of Bujian Puzuo were the primary deformations. The scale of the specimen did not affect the layer where the maximum interlayer slip occurred, but it did decrease the proportion of slip deformation. Conversely, the reducing vertical load caused the layer with the maximum slippage and the position of the damaged Dou components to shift upward, and the proportion of slip deformation increased. When the vertical load was decreased by 3.7 times, the maximum horizontal bearing capacity under positive and negative loadings, initial stiffness, and energy dissipation of the specimen decreased by approximately 60%, 58.79%, 69.62%, and 57.93%, respectively. The horizontal bearing capacity under positive loading and energy dissipation of the specimen increased by 35.63% and 131.54%, when the specimen scale was doubled and the vertical load was increased by 15 times.

이축 하중을 받는 이주형 철근콘크리트 교각의 손상도평가 (Damage Assessment of RC Column-Bent Pier under Bidirection Loading)

  • 박창규;이범기;윤상철;정영수
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2005년도 봄학술 발표회 논문집(I)
    • /
    • pp.203-206
    • /
    • 2005
  • Reinforced concrete(RC) column-bent piers represent one of the popular piers used in highway bridges of Korea. Seismic performance of RC column-bent piers under bi-directional seismic loadings was experimentally investigated. Six column bent piers were constructed with two circular supporting columns which were made in 400 mm diameter and 2,000 mm height. Test parameters are different transverse reinforcement ratio and loading pattern. Three specimens were loaded with bi-directional lateral forces which were main cyclic loads in the longitudinal direction and sub-cyclic loads in the transverse direction. Other three specimens were loaded in the opposite way. Test results indicated that lateral strength and ductility of the latter specimens were bigger than those of the former specimens. Plastic hinge was formed with the spall of cover concrete and the fracture of the longitudinal reinforcing steels in the bottom part of two supporting columns for the former three specimens. Similar behavior was observed in the top and bottom parts of two supporting columns for the latter three specimens.

  • PDF