• Title/Summary/Keyword: seismic isolation retrofit

Search Result 17, Processing Time 0.02 seconds

Seismic Nonlinear Damage Assessment and Retrofit Strategies for Existing Bridges with Isolation System using Retrofit Slate Function (비선형 내진 손상도 평가 및 보강상태함수를 이용한 기존교량의 내진 보강 전략)

  • Cho, Hyo-Nam;Choi, Hyun-Ho;Eom, Won-Seok;Shin, Man-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.6 no.1
    • /
    • pp.179-191
    • /
    • 2002
  • This paper presents a systematic approach to the seismic nonlinear analysis and retrofit strategies for existing bridges with isolation system using retrofit slate function newly proposed in this study. A seismic retrofit scheme using sliding base isolation system was presented to reduce the seismic hazard for bridge structures. In this study, two types of isolation systems such as lead bearings and sliding isolators were used. The behavior of sliding isolators was modeled by a triaxial interaction model. And three types of earthquakes such as El Centro, San Fernando, and the artificial were used as earthquake ground excitations. Seismic response analyses of the bridge before and after retrofit were effectively carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-Bridge. Also, this paper proposes a retrofit state function for easily representing the efficiency of a retrofit scheme.

Comparison of Seismic Retrofit Efficiencies of Base Isolation Systems for Existing Bridges

  • 조효남;엄원석
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10a
    • /
    • pp.81-86
    • /
    • 2000
  • In recent modern protective systems have been introduced to reduce the vulnerability of bridges to seismic events. These protective systems include base isolation devices of different types, damping devices and active control devices. The objective of this study is to analytically evaluate the efficiency of a seismic retrofit scheme using base isolation systems, such as lead rubber bearings and sliding isolators. In this study, a triaxial model was used, which is capable of accurately developing the behavior of sliding isolators including the influence of the changing vertical force and velocity on the friction coefficients. Seismic response analyses of the bridge before and after retrofit were carried out by using a three-dimensional nonlinear seismic analysis program, IDARC-BRIDGE. To evaluate the efficiency of a retrofit scheme using triaxial isolators, a comparative study of performances of above two base isolation systems was conducted, and the numerical results show that the triaxial isolation solution can effectively reduce the sheat forces at the piers for the vertical ground motion.

  • PDF

Improvement of Seismic Performance of Existing Bridges using Isolation (지진격리장치를 이용한 기존 교량의 내진성능 향상)

  • 한경봉;김민지;박선규
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.8 no.2
    • /
    • pp.9-17
    • /
    • 2004
  • The seismic performance evaluation and retrofit process are very important in old existing bridges. If the result is not appropriate. then a retrofit process are required. Among various retrofit methods, the seismic isolation is a very useful method. because it can be applied by replacing old bridge bearings. In this study, the effectiveness of seismic isolation is rationally verified. For this purpose, two seismic isolations used widely are selected and non-linear static and dynamic analyses are performed. The responses of existing bridges are compared with those of retrofited bridges by seismic isolation bridge for earthquake of target level. and seismic performances are evaluated.

Investigation on seismic isolation retrofit of a historical masonry structure

  • Artar, Musa;Coban, Keziban;Yurdakul, Muhammet;Can, Omer;Yilmaz, Fatih;Yildiz, Mehmet B.
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.501-512
    • /
    • 2019
  • In this study, seismic vulnerability assessment and seismic isolation retrofit of Bayburt Yakutiye Mosque is investigated. Bayburt Yakutiye Mosque was built in the early 19th century at about 30-meter distance to Coruh river in the center of Bayburt in Turkey. The walls of historical masonry structure were built with regional white and yellow stones and the domes of the mosque was built with masonry bricks. This study is completed in four basic phases. In first phase, experimental determination of the regional white stone used in the historical structure are investigated to determine mechanical properties as modulus of elasticity, poison ratio and compression strengths etc. The required information of the other materials such as masonry brick and the regional yellow stone are obtained from literature studies. In the second phase, three dimensional finite element model (FEM) of the historical masonry structure is prepared with 4738 shell elements and 24789 solid elements in SAP2000 software. In third phase, the vulnerability assessment of the historical mosque is researched under seismic loading such as Erzincan (13 March 1992), Kocaeli (17 August 1999) and Van (23 November 2011) earthquakes. In this phase, the locations where damage can occur are determined. In the final phase, rubber base isolators for seismic isolation retrofit is used in the macro model of historical masonry mosque to prevent the damage risk. The results of all analyses are comparatively evaluated in details and presented in tables and graphs. The results show that the application of rubber base isolators can prevent to occur the destructive effect of earthquakes.

Seismic Response of Multiple Span Steel Bridges in the Central and Southeastern United States (미 중부 및 동남부 지역의 다경간 교량의 지진응답)

  • Choi, Eunsoo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.427-439
    • /
    • 2003
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that lead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

The Pseudo-Dynamic Test for the Seismic Retrofit System Utilizing Existing Bridge Bearings (교량의 기존 받침을 활용하는 내진보강시스템의 유사동적 실험)

  • Kwahk, Im-Jong;Cho, Chang-Beck;Kim, Young-Jin;Kwark, Jong-Won
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.1 s.53
    • /
    • pp.21-27
    • /
    • 2007
  • In this study, an approach that installs seismic isolation bearings was proposed for the seismic retrofit of the existing bridges. The method that replaces all existing bearings with seismic isolators was proposed already. However, in this study, we recommend to utilize the existing bearings for the benefit of safety and cost. According to our proposal, the seismic isolators do not support vertical loads but they Just function as the period shifter and the horizontal damper. To verify this approach experimentally, the real scale bearings and lead rubber bearings far the real highway bridges were designed and fabricated. And the responses of this isolated bridges to the assumed earthquakes were determined by the pseudo dynamic test scheme. The test results were also compared to the responses computed by the well known structural analysis software to check the reliability of the test. From the test results, we found that the retrofitted bridges using the proposed method showed stable performances under earthquakes.

Progress of Applications and Studies on Earthquake Resistance Design of Bridges in Korea

  • Ha, Dong-Ho;Koh, Hyun-Moo;Ok, Seung-Yong;Lee, Sun-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • This paper describes the state-of-the art research activities on seismic isolation systems for improving the seismic capacities of the bridges in Korea. Though Korea is located in a region of low-to-moderate seismicity, the construction of seismic isolation systems has increased rapidly. The application of seismic isolation system has become popular worldwide because of its stable behavior and economical construction especially for bridge structures. Since optimal reliability level of isolated bridges can be determined as the one that provides the highest net life-cycle benefit to society, or the minimum Life-Cycle Cost (LCC), an optimal design procedure based on minimum LCC concept is more expedient for the design of seismically isolated bridges in areas of low-to-moderate seismicty. To verify the adequacy of the new design concept based on the LCC minimization, experimental studies on seismically isolated bridge are introduced as well, which include pseudo-dynamic test of scaled pier and dynamic field test of full-scale. With the application of seismic isolation systems, many kinds of dampers to improve the seismic capacity of structure are also applied not only to new bridges but also to existing bridges.

Pseudo Dynamic Test of the Seismically Isolated RC Piers (지진격리설계된 RC교각의 유사동적 실험)

  • Kim Young-Jin;Kwahk Im-Jong;Cho Chang-Beck;Kwark Jong-Won
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.11a
    • /
    • pp.25-28
    • /
    • 2004
  • Many highway bridges in Korea need seismic retrofit because only one decade has passed since the seismic design criteria was introduced. In this experimental study, the effectiveness of base isolation bearings was discussed for the seismic retrofit of the highway bridges. Four real scale RC pier specimens were constructed for the test. These RC piers didn't have seismic details. Except for one RC pier for the pilot test, three types of bearings such as Pot bearing, Rubber bearing (RB), Lead-rubber bearing (LRB) were applied to the other RC piers respectively. The RC pier with Pot bearing means current state of the prototype bridge that is not retrofitted seismically. And two RC piers with RB or LRB mean assumed states of the prototype bridge that are retrofitted seismically. To simulate dynamic behavior of these RC piers under earthquake loads, Pseudo-dynamic test method was used.

  • PDF

Seismic Responses of Highway Multiple Span Steel Bridges Retrofitted by Protective Devices (저감장치에 의해 개선된 고속도로 다경간 강교량의 지진응답)

  • Choi, Eun-Soo;Kim, Joo-Woo
    • Journal of Korean Association for Spatial Structures
    • /
    • v.4 no.1 s.11
    • /
    • pp.49-59
    • /
    • 2004
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that iead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

Application of Seismic Isolation and Vibration Control in Korea (우리나라의 면진 및 진동제어)

  • Lee, Dong-Guen;Kim, Tae-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.6 s.52
    • /
    • pp.67-77
    • /
    • 2006
  • Seismic activity of Korea is not so high as that of Japan or California and most of the structures were designed without considering the influence of earthquakes until the first seismic design code was enforced in 1988. Therefore, it was very hard to find seismically isolated structures in Korea until 1980's. Korean engineers assumed that the seismic isolation or vibration control would be useful only in a high seismicity region while such technologies can be quite useful in a low seismicity region for the efficient reduction of earthquake damages. Recently, Korean engineers began to have interest in the seismic isolation or vibration control and applied it to some important structures such as LNG storage tanks, many bridges and several buildings. However, design codes are not defining such useful advanced technologies for the design of building structures and several projects employing seismic isolation or vibration control in the design of structures had difficulties in obtaining construction permit from the local government. Therefore, it is an urgent requirement to introduce these advanced technologies in the seismic design code.