• Title/Summary/Keyword: seismic ground motion

Search Result 728, Processing Time 0.027 seconds

A Study on the Focal Mechanism of the Hongsung Earthquake from the P-Wave Polarity Distributions (초동극성분포를 이용한 홍성지진의 Focal Mechanism 연구)

  • 김준경
    • The Journal of Engineering Geology
    • /
    • v.1 no.1
    • /
    • pp.121-136
    • /
    • 1991
  • The focal mechanism of the Hongsung Earthquake (1978. Oct. 7, M$_L$=5.0, Latitude 36.62N, Longitude 1 26.67E) was evaulated using the polarity distribution of the P-Waveforms. Through the non-linear computer process, the compatibility of polarity distributions of the 9 P-Waveforms observed at teleseismic distances from the Hongsung Earthquake epicenter was investigated to those of the focal mechanism determined from the varying strike, dip and rake angles. The resultant values for the strike and dip angle of the principal fault plane, which apparently matches very well the sunface lineament of the Hongsung region, are determined to be about 247 degree and 78 degree with uncertainties, respectively. However, the rake angle of the focal mechanism has wide range of 40 degree to 160 degree, which is mainly due to the poor coverage of the azimuthal angle of the observed seismic stations. Due to the consistency of principal stress axes, the resultant focal mechanism could support the current stress regime of that region, which may be caused by subduction of the Pacific Plate under the Eurasia Plate along the Japan Trench. It also provides information of seismic source characteristics of the part of the Korean Peninsula for aseismic design criteria such as Site Specific Response Spectrum and Strong Ground Motion Time History for the nuclear power plants and related nuclear waste disposal facility sites.

  • PDF

Ground Motion Evaluation from the Fukuoka Earthquake (후쿠오카 지진('05. 3. 20, M=7.0)의 지진동 감쇠특성 분석)

  • Park Donghee;Yun Kwanhee;Chang Chun-Joong;Choi Weon-Hack;Lee Dae-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2005.05a
    • /
    • pp.87-92
    • /
    • 2005
  • The ground-motion (GM) attenuation relations available in Korea has required the validation process for large earthquakes since most of them were developed based on small earthquake database, The Fukuoka earthquake (M=7.0) that occurred near the Korean Peninsula provides invaluable data to indirectly evaluate the attenuation characteristics of the strong GM in Korea. The GM levels (PGA, SA) obtained from the KIK-net downhole stations near the epicenter (R<100km) are reasonably predicted by the GM attenuation relation developed by KEPRI in 2003 for the Kori NPP site, the result of which validates the use of KEPRI GM attenuation relation for predicting GM induced by future large earthquakes. Also, the comparison between the Osaki spectra and response spectra of KIK-net downhole data reveals that the amplitude levels of Osaki spectra are higher than the spectra from KIK-net stations which are believed to be installed at the seismic basement.

  • PDF

Ground Motion Evaluation from the Fukuoka Earthquake (후쿠오카 지진('05. 3. 20, M=7.0)의 지진동 감쇠특성 분석)

  • Park, Dong-Hee;Yun, Kwan-Hee;Chang, Chun-Joong;Choi, Weon-Hack;Lee, Dae-Soo
    • Journal of the Korean Geophysical Society
    • /
    • v.8 no.3
    • /
    • pp.109-113
    • /
    • 2005
  • The ground-motion (GM) attenuation relations available in Korea has required the validation process for large earthquakes since most of them were developed based on small earthquake database. The Fukuoka earthquake (M=7.0) that occurred near the Korean Peninsula provides invaluable data to indirectly evaluate the attenuation characteristics of the strong GM in Korea. The GM levels (PGA, SA) obtained from the KIK-net downhole stations near the epicenter (R<100km) are reasonably predicted by the GM attenuation relation developed by KEPRI in 2003 for the Kori NPP site, the result of which validates the use of KEPRI GM attenuation relation for predicting GM induced by future large earthquakes. Also, the comparison between the Osaki spectra and response spectra of KIK-net downhole data reveals that the amplitude levels of Osaki spectra are higher than the spectra from KIK-net stations which are believed to be installed at the seismic basement.

  • PDF

Extracting Foundation Input Motion Considering Soil-Subterranean Level Kinematic Interaction (지하층-지반 운동학적 상호작용을 고려한 기초저면의 설계지반운동 산정)

  • Sadiq, Shamsher;Yoon, Jinam;Kim, Juhyong;Park, Duhee
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.11
    • /
    • pp.31-37
    • /
    • 2018
  • Most of tall building systems are composed of above-ground structure and underground structure used for parking and stores. The underground structure may have a pronounced influence on tall building response, but its influence is still not well understood. In a widely referred report on seismic design of tall buildings, it is recommended to model the underground structure ignoring the surrounding ground and to impose input ground motion calculated considering the underground structure-soil kinematic interaction between at its base. In this study, dynamic analyses are performed on 1B and 5B basements. The motions at the base are calculated to free field responses. The motions are further compared to two procedures outlined in the report to account for the kinematic interaction. It is shown that one of the procedure fits well for the 1B model, whereas both procedures provide poor fit with 5B model analysis result.

Estimation of Wave Parameters for Probabilistic Tsunami Hazard Analysis Considering the Fault Sources in the Western Part of Japan (일본 서부 단층 지진원을 고려한 확률론적 지진해일 재해도 분석의 파고 변수 도출)

  • Rhee, Hyun-Me;Kim, Min Kyu;Sheen, Dong-Hoon;Choi, In-Kil
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.3
    • /
    • pp.151-160
    • /
    • 2014
  • Probabilistic tsunami hazard analysis (PTHA) is based on the approach of probabilistic seismic hazard analysis (PSHA) which is performed using various seismotectonic models and ground-motion prediction equations. The major difference between PTHA and PSHA is that PTHA requires the wave parameters of tsunami. The wave parameters can be estimated from tsunami propagation analysis. Therefore, a tsunami simulation analysis was conducted for the purpose of evaluating the wave parameters required for the PTHA of Uljin nuclear power plant (NPP) site. The tsunamigenic fault sources in the western part of Japan were chosen for the analysis. The wave heights for 80 rupture scenarios were numerically simulated. The synthetic tsunami waveforms were obtained around the Uljin NPP site. The results show that the wave heights are closely related with the location of the fault sources and the associated potential earthquake magnitudes. These wave parameters can be used as input data for the future PTHA study of the Uljin NPP site.

A Study on the Dynamic Behavior of Vertical Shaft in Multi-Layered Soil (다층지반에서의 수직구 동적 거동 분석)

  • Kim, Yong Min;Jeong, Sang Seom;Kim, Kyoung Yul;Lee, Yong Hee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.4C
    • /
    • pp.109-116
    • /
    • 2011
  • In this study, dynamic response of a vertical shaft subjected to seismic loads was evaluated by three-dimensional Finite Element (FE) approach. The emphasis was on quantifying the ground conditions, input motions and direction of motions. A series of parametric analyses were carried out. From the results of FE analysis, more than 1.7 times increase in shear force and bending moment is obtained when the stiff layer was thinker than the soft layer. And all of the maximum values were occurred near the interface between the soil layers. The dynamic behavior of vertical shaft was significantly influenced by the different frequencies of the input motion, and normalized acceleration of surrounding soil was 3 times larger than vertical shaft.

Performance based assessment for existing residential buildings in Lake Van basin and seismicity of the region

  • Isik, Ercan;Kutanis, Mustafa
    • Earthquakes and Structures
    • /
    • v.9 no.4
    • /
    • pp.893-910
    • /
    • 2015
  • Earthquake safety of existing buildings has gained considerable importance after earthquakes which have occurred in our country especially in the last 30 years. Performance based assessment methods have been widely used for existing reinforced concrete structures. This study aims to investigate the earthquake performances of the building stock located in Van Lake basin in Eastern Anatolia of Turkey. The case study of buildings has been modeled on and the structural performances have been determined by employing the non-linear methods described in the latest Turkish Earthquake Code published in 2007. The Van lake basin is located on the very seismically active in a region. On October 23, 2011, a magnitude of Mw 7.2 earthquake struck the Van province in eastern Turkey. The earthquake ground motion was recorded as about 0.1g in Bitlis province. Performance evaluations have been performed by taking samples from each district consisting urban building stocks of Bitlis. A total of 16 reinforced concrete buildings have been evaluated. Among them, 53% of those buildings were determined in the Fully Operational performance level; 13% of them in the Life Safety performance and 34% of them could not be evaluated because of the ratio of the effective mass of first mode to the total mass of the buildings was smaller than 0.70. Therefore, incremental equivalent seismic load methods, which are a part of Turkish Earthquake Code -2007, cannot be used.

Experimental and numerical investigation of wire rope devices in base isolation systems

  • Calabrese, Andrea;Spizzuoco, Mariacristina;Losanno, Daniele;Barjani, Arman
    • Earthquakes and Structures
    • /
    • v.18 no.3
    • /
    • pp.275-284
    • /
    • 2020
  • The scope of this study is the comparison between experimental results of tests performed on a base isolated building using helical wire rope isolators (WRs), and results of Nonlinear Response History Analyses (NRHAs) performed using SAP 2000, a commercial software for structural analysis. In the first stage of this research, WRs have been tested under shear deformation beyond their linear range of deformation, and analytical models have been derived to describe the nonlinear response of the bearings under different directions of loading. On the following stage, shaking table tests have been carried out on a 1/3 scale steel model isolated at the base by means of curved surface sliders (CSS) and WRs. The response of the structure under ground motion excitation has been compared to that obtained using numerical analyses in SAP 2000. The feasibility of modelling the nonlinear behavior of the tested isolation layer using multilinear link elements embedded in SAP 2000 is discussed in this paper, together with the advantages of using WRs as supplemental devices for CSSs base isolated structures.

Mechanical Characterization of Lead-Rubber Bearing by Horizontal Shear Tests (수평 전단시험에 의한 납 삽입 적층고무베어링의 기계적 특성 평가)

  • 전영선;최인길;유문식
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.5 no.6
    • /
    • pp.1-10
    • /
    • 2001
  • In this study, the horizontal loading tests of 10ton and 200ton capacity of LRB(lead-rubber bearing) were performed for the evaluation of the dynamic properties of the LRB. It is noted from the test results that dynamic properties of the LRB are dependent on the loading frequency, vertical load and shear strain. A Slender bearing subjected to large deformation will tend to develop plastic hinges in the end regions of the lead plug which will cause the failure of the lead plug. It is recommended that the appropriate mechanical properties of LRB considering the level of structural response and input ground motion should be used in the design of base isolated structures.

  • PDF

Drift displacement data based estimation of cumulative plastic deformation ratios for buildings

  • Nishitani, Akira;Matsui, Chisa;Hara, Yushiro;Xiang, Ping;Nitta, Yoshihiro;Hatada, Tomohiko;Katamura, Ryota;Matsuya, Iwao;Tanii, Takashi
    • Smart Structures and Systems
    • /
    • v.15 no.3
    • /
    • pp.881-896
    • /
    • 2015
  • The authors' research group has developed a noncontact type of sensors which directly measure the inter-story drift displacements of a building during a seismic event. Soon after that event, such seismically-induced drift displacement data would provide structural engineers with useful information to judge how the stories have been damaged. This paper presents a scheme of estimating the story cumulative plastic deformation ratios based on such measured drift displacement information toward the building safety monitoring. The presented scheme requires the data of story drift displacements and the ground motion acceleration. The involved calculations are rather simple without any detailed information on structural elements required: the story hysteresis loops are first estimated and then the cumulative plastic deformation ratio of each story is evaluated from the estimated hysteresis. The effectiveness of the scheme is demonstrated by utilizing the data of full-scale building model experiment performed at E-defense and conducting numerical simulations.