• Title/Summary/Keyword: seismic ground motion

Search Result 731, Processing Time 0.026 seconds

Seismic Safety Assessment of Long Period Structures Base on Elastic/Inelastic Response Characteristics (장주기구조물의 탄소성응답특성을 고려한 지진안전성 평가)

  • Bang, Myung-Seok
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.3
    • /
    • pp.52-58
    • /
    • 2011
  • The earthquake characteristic assessment of social overhead facilities would be an important examination issue for seismic capacity enhancement. This study is intended to reasonably evaluate the structural behavior of longperiod frame structures considering near-fault and far-fault earthquake characteristics. Elastic/inelastic time history analyses were performd by selecting the objective structure which can precisely reflect the effect of input ground motion. Based on the result of numerical analysis, we have investigated response aspects of shear force, moment, acceleration and displacement according to earthquake characteristics. Moreover, in order to understand the inelastic behavior of the objective structure, we have analyzed and compared collapse modes by considering the occurrence process of plastic hinges. The outcome of this research is expected to provide the basic information for the seismic safety assessment of long-period frame structures.

Earthquake response of nanocomposite concrete pipes conveying and immersing in fluid using numerical methods

  • Maleki, Mostafa;Bidgoli, Mahmood Rabani;Kolahchi, Reza
    • Computers and Concrete
    • /
    • v.24 no.2
    • /
    • pp.125-135
    • /
    • 2019
  • Concrete pipelines are the most efficient and safe means for gas and oil transportation over a long distance. The use of nano materials and nono-engineering can be considered for enhancing concrete pipelines properties. the tests show that SiO2 nanoparticles can improve the mechanical behavior of concrete. Moreover, severe hazard for pipelines is seismic ground motion. Over the years, scientists have attempted to understand pipe behavior against earthquake most frequently via numerical modeling and simulation. Therefore, in this paper, the dynamic response of underwater nanocomposite submerged pipeline conveying fluid is studied. The structure is subjected to the dynamic loads caused by earthquake and the governing equations of the system are derived using mathematical model via Classic shell theory and Hamilton's principle. Navier-Stokes equation is employed to calculate the force due to the fluid in the pipe. As well, the effect of external fluid is modeled with an external force. Mori-Tanaka approach is used to estimate the equivalent material properties of the nanocomposite. 1978 Tabas earthquake in Iran is considered for modelling seismic load. The dynamic displacement of the structure is extracted using differential quadrature method (DQM) and Newmark method. The effects of different parameters such as SiO2 nanoparticles volume percent, boundary conditions, thickness to radius ratios, length to radius ratios, internal and external fluid pressure and earthquake intensity are discussed on the seismic response of the structure. From results obtained in this paper, it can be found that the dynamic response of the pipe is increased in the presence of internal and external fluid. Furthermore, the use of SiO2 nanoparticles in concrete pipeline reduces the displacement of the structure during an earthquake.

Quasi-Static and Shaking Table Tests of Precast Concrete Structures Utilizing Clamped Mechanical Splice (가압고정 기계적이음을 활용한 프리캐스트 콘크리트 구조물의 준정적 및 진동대 실험)

  • Sung, Han Suk;Ahn, Seong Ryong;Park, Si Young;Kang, Thomas H.-K.
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.27 no.1
    • /
    • pp.37-47
    • /
    • 2023
  • A new clamped mechanical splice system was proposed to develop structural performance and constructability for precast concrete connections. The proposed mechanical splice resists external loading immediately after the engagement. The mechanical splices applicable for both large-scale rebars for plants and small-scale rebars for buildings were developed with the same design concept. Quasi-static lateral cyclic loading tests were conducted with reinforced and precast concrete members to verify the seismic performance. Also, shaking table tests with three types of seismic wave excitation, 1) random wave with white noise, 2) the 2016 Gyeongju earthquake, and 3) the 1999 Chi-Chi earthquake, were conducted to confirm the dynamic performance. All tests were performed with real-scale concrete specimens. Sensors measured the lateral load, acceleration, displacement, crack pattern, and secant system stiffness, and energy dissipation was determined by lateral load-displacement relation. As a result, the precast specimen provided the emulative performance with RC. In the shaking table tests, PC frames' maximum acceleration and displacement response were amplified 1.57 - 2.85 and 2.20 - 2.92 times compared to the ground motions. The precast specimens utilizing clamped mechanical splice showed ductile behavior with energy dissipation capacity against strong motion earthquakes.

Effect of Loading Frequency Dependent Soil Behavior on Seismic Site Effect (하중의 주파수에 의하여 지배받은 흙의 동적 거동이 부지증폭현상에 미치는 영향)

  • Park Du-Hee;Hashash Y.M.A;Lee Hyun-Woo;Kim Jae-Yoen
    • Journal of the Korean Geotechnical Society
    • /
    • v.22 no.3
    • /
    • pp.23-35
    • /
    • 2006
  • Equivalent linear analysis is widely used in estimating local seismic site effects. The soil behavior in the analysis is often assumed to be rate-independent and is not influenced by the seismic loading frequency. Laboratory results, however, indicate that cohesive soil behavior is greatly influenced by the loading frequency. A new equivalent linear analysis method that accounts for the loading frequency dependent soil behavior is developed and used to perform a series of one dimensional site response analyses. Results indicate that while frequency dependent shear modulus has limited influence on computed site response, frequency dependent soil damping greatly filters out high frequency components of the ground motion and thus results in lower response.

Required Strength Spectrum of Low-Rise Reinforced Concrete Shear Wall Buildings with Pilotis (필로티 구조를 가진 저층 철근콘크리트 전단벽식 건물의 요구내력 스펙트럼)

  • Lee, Kang-Seok;Oh, Jae-Keun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.5
    • /
    • pp.61-69
    • /
    • 2007
  • The main purpose of this study is to provide a basic information for the seismic capacity evaluation and the seismic design of low-rise reinforced concrete (RC) shear wall buildings, which are comprised of a pilotis in the first story. In this study, relationships between strengths and ductilities of each story of RC buildings with pilotis are investigated based on the nonlinear seismic response analysis. The characteristics of low-rise RC buildings with pilotis are assumed as the double degree of freedom structural systems. In order to simulate these systems, the pilotis is idealized as a degrading trilinear hysteretic model that fails in flexure and the upper story of shear wall system is idealized as a origin-oriented hysteretic model that fails in shear, respectively. Stiffness properties of both models are varied in terms of story shear coefficients and structures are subjected to various ground motion components. By analyzing these systems, interaction curves of required strengths for various levels of ductility factors are finally derived for practical purposes. The result indicates that the required strength levels derived can be used as a basic information for seismic evaluation and design criteria of low-rise reinforced concrete shear wall buildings having pilotis structure.

Comparative Analysis of Seismic Records Observed at Seismic Stations and Smartphone MEMS Sensors (지진관측소와 스마트폰 MEMS 센서 기록의 비교분석)

  • Jang, Dongil;Ahn, Jae-Kwang;Kwon, Youngwoo;Kwak, Dongyoup
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.41 no.5
    • /
    • pp.513-522
    • /
    • 2021
  • A smartphone (SMP) includes a MEMS sensor that can record 3-components motions and has a wireless network device to transmit data in live. These features and relatively low maintenance costs are the advantage of using SMPs as an auxiliary seismic observation network. Currently, 279 SMPs are monitoring seismic motions. In this study, we compare the SMP records with the seismic station (SS) records to validate SMP records. The data used for comparison are records for five earthquakes that occurred in 2019, which are 321 SS data recorded by the Korea Meteorological Administration and the Korea Institute of Geoscience and Mineral Resources and 145 recorded by SMPs. The analysis shows that the event-term corrected average residual of the SMP MEMS sensor records is 0.59 which indicating that the peak horizontal acceleration by SMP is 1.8 factor bigger than the peak ground acceleration by SS. In addition, the residuals tend to decrease as the installation floor of the smartphone MEMS sensor increases, which is the similar trend with response spectra from SS.

Seismic Studies on Ground Motion using the Multicomponent Complex Trace Analysis Method (다성분 복소 트레이스 분석법을 이용한 지진파 입자운동 연구)

  • Lee, So-Young;Kim, Ki-Young;Kim, Han-Joon
    • Journal of the Korean Geophysical Society
    • /
    • v.3 no.1
    • /
    • pp.37-48
    • /
    • 2000
  • In order to investigate in-line ground motions caused by earthquakes, we examine the multicomponent complex trace analysis method (MCTAM) for the synthetic data and apply it to real earthquake data. An experimental result for synthetic data gives correct information on the arrival times, duration of individual phases, and approaching angles for body waves. Rayleigh waves are also easily identified with the MCTAM. A deep earthquake with magnitude of 7.3 was chosen to test various polarization attributes of ground motions. For P waves, instantaneous phase difference between the vertical and the in-line horizontal components ${\phi}(t)$, instantaneous reciprocal ellipticity ${\rho}(t)$, and approaching angle ${\tau}(t)$ are computed to be ${\pm}180^{\circ},\;0{\sim}0.25,\;and\;-30^{\circ}{\sim}-45^{\circ}$, respectively. For S waves, ${\phi}(t)$ tends to vary while ${\rho}(t)$ have values of $0{\sim}0.3\;and\;{\tau}(t)$ remains near vertical, respectively. A relatively low frequency signal registered just prior to the S wave event is interpreted as a P-wave phase based on its polarization characteristics. Velocities of P and S waves are computed to be 8.633 km/s and 4.762 km/s, and their raypath parameters 0.074 s/km and 0.197 s/km. Dynamic Poisson's ratio is obtained as 0.281 from the velocities of P and S waves.

  • PDF

Evaluation of seismic performance of mid-rise reinforced concrete frames subjected to far-field and near-field ground motions

  • Ansari, Mokhtar;Ansari, Masoud;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.15 no.5
    • /
    • pp.453-462
    • /
    • 2018
  • Damages to buildings affected by a near-fault strong ground motion are largely attributed to the vertical component of the earthquake resulting in column failures, which could lead to disproportionate building catastrophic collapse in a progressive fashion. Recently, considerable interests are awakening to study effects of earthquake vertical components on structural responses. In this study, detailed modeling and time-history analyses of a 12-story code-conforming reinforced concrete moment frame building carrying the gravity loads, and exposed to once only the horizontal component of, and second time simultaneously the horizontal and vertical components of an ensemble of far-field and near-field earthquakes are conducted. Structural responses inclusive of tension, compression and its fluctuations in columns, the ratio of shear demand to capacity in columns and peak mid-span moment demand in beams are compared with and without the presence of the vertical component of earthquake records. The influences of the existence of earthquake vertical component in both exterior and interior spans are separately studied. Thereafter, the correlation between the increase of demands induced by the vertical component of the earthquake and the ratio of a set of earthquake record characteristic parameters is investigated. It is shown that uplift initiation and the magnitude of tensile forces developed in corner columns are relatively more critical. Presence of vertical component of earthquake leads to a drop in minimum compressive force and initiation of tension in columns. The magnitude of this reduction in the most critical case is recorded on average 84% under near-fault ground motions. Besides, the presence of earthquake vertical components increases the shear capacity required in columns, which is at most 31%. In the best case, a direct correlation of 95% between the increase of the maximum compressive force and the ratio of vertical to horizontal 'effective peak acceleration (EPA)' is observed.

Estimation of Spectrum Decay Parameter χ and Stochastic Prediction of Strong Ground Motions in Southeastern Korea (한반도 남동부에서 부지효과를 고려한 스펙트럼 감쇠상수 χ 추정 및 강지진동의 추계학적 모사)

  • 조남대;박창업
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.6
    • /
    • pp.59-70
    • /
    • 2003
  • We estimated the spectrum decay parameter $\chi$ and the stress parameter ($\Delta$$\sigma$) in southeastern Korea. Especially, we propose a procedure to compute site-independent $\chi$$_{q}$ and dependent $\chi$$_{s}$ values, separately, This procedure is to use the coda normalization method for the computation of site independent Q or corresponding $\chi$$_{q}$ value as the first step followed by the next step, the computation of $\chi$$_{s}$ values for each site using the given $\chi$$_{q}$ value evaluated at the first step, For the estimation of stress parameter, we used seismic data monitored from three earthquakes occurred near Gyeongju in 1999 with the method of Jo and Baag, In addition, we simulated strong ground motion using the $\chi$ value and the stress parameter, In this case, we calculated the $\chi$ value with conventional method. The $\chi$ value of 0.016+0.000157R and the stress parameter of 92-bar was applied to the stochastic simulation, At last, we derived seismic attenuation equation using results of the stochastic prediction, and compared these results with some others reported previously.ported previously.

Seismic Behavior and Estimation for Base Isolator Bearings with Self-centering and Reinforcing Systems (자동복원 및 보강 시스템과 결합된 면진받침의 지진거동과 평가)

  • Hu, Jong Wan
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.35 no.5
    • /
    • pp.1025-1037
    • /
    • 2015
  • Flexible base isolation bearings that separate superstructure from ground have been widely used in the construction field because they make a significant contribution to increasing the fundamental period of the structure, thereby decreasing response acceleration transmitted into the superstructure. However, the established bearing devices installed to uphold the whole building give rise to some problems involved with failure and collapse due to lack of the capacity as modern structures are getting more massive and higher. Therefore, this study suggests new isolation bearings assembled with additional restrainers enabled to reinforcing and recentering, and then evaluates their performance to withstand the seismic load. The superelastic shape memory alloy (SMA) bars are installed into the conventional lead-rubber bearing (LRB) devices in order to provide recentering forces. These new systems are modeled as component spring models for the purpose of conducting nonlinear dynamic analyses with near fault ground motion data. The LRB devices with steel bars are also designed and analyzed to compare their responses with those of new systems. After numerical analyses, ultimate strength, maximum displacement, permanent deformation, and recentering ratio are compared to each model with an aim to investigate which base isolation models are superior. It can be shown that LRB models with superelastic SMA bars are superior to other models compared to each other in terms of seismic resistance and recentering effect.