• Title/Summary/Keyword: seismic fragility++

Search Result 438, Processing Time 0.022 seconds

Influence of time-varying attenuation effect of damage index on seismic fragility of bridge

  • Yan, Jialei;Liang, Yan;Zhao, Boyang;Qian, Weixin;Chen, Huai
    • Earthquakes and Structures
    • /
    • v.19 no.4
    • /
    • pp.287-301
    • /
    • 2020
  • Fragility as one of the most effective methods to evaluate seismic performance, which is greatly affected by damage index. Taking a multi span continuous rigid frame offshore bridge as an example. Based on fragility and reliability theory, considering coupling effect of time-varying durability damage of materials and time-varying attenuation effect of damage index to analyze seismic performance of offshore bridges. Results show that IDA curve considering time-varying damage index is obviously below that without considering; area enclosed by IDA of 1# pier and X-axis under No.1 earthquake considering this effect is 96% of that without considering. Area enclosed by damage index of 1# pier and X-axis under serious damage with considering time-varying damage index is 90% of that without considering in service period. Time-varying damage index has a greater impact on short pier when ground motion intensity is small, while it has a great impact on high pier when the intensity is large. The area enclosed by fragility of bridge system and X-axis under complete destruction considering time-varying damage index is 165% of that without considering when reach designed service life. Therefore, time-varying attenuation effect of damage index has a great impact on seismic performance of bridge in service period.

Seismic Fragility Function for Unreinforced Masonry Buildings in Korea (국내 무보강 조적조 건물의 지진취약도함수)

  • Ahn, Sook-Jin;Park, Ji-Hun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.6
    • /
    • pp.293-303
    • /
    • 2021
  • Seismic fragility functions for unreinforced masonry buildings were derived based on the incremental dynamic analysis of eight representative inelastic numerical models for application to Korea's earthquake damage estimation system. The effects of panel zones formed between piers and spandrels around openings were taken into account explicitly or implicitly regarding stiffness and inelastic deformation capacity. The site response of ground motion records measured at the rock site was used as input ground motion. Limit states were proposed based on the fraction of structural components that do not meet the required performance from the nonlinear static analysis of each model. In addition to the randomness of ground motion considered in the incremental dynamic analysis explicitly, supplementary standard deviation due to uncertainty that was not reflected in the fragility assessment procedure was added. The proposed seismic fragility functions were verified by applying them to the damage estimation of masonry buildings located around the epicenter of the 2017 Pohang earthquake and comparing the result with actual damage statistics.

Fragility Analyses on Seismic Isolated LRB Concrete Bridges (LRB 면진 콘크리트 교량의 손상도 해석)

  • Kim, Jong-In;Kim, Doo-Kie;Kim, Tae-Hyeong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.10 no.4
    • /
    • pp.135-144
    • /
    • 2006
  • In performing a risk analysis of structures under earthquakes, it is imperative to identify the vulnerability of structures associated with various damage stages considering structural properties, soil-structure interactions, site condition, and so on. In this paper, the method to derive a representative fragility curve of seismic isolated LRB(lead rubber bearing) bridges is proposed. In which, the curve is assumed log-normally distribution with two parameters. The risk analysis of seismic isolated LRB bridges considering earthquake effects such as PGA, PGV, SA, SV, and SI is also performed to assure the earthquake resisting capability of the structures. An practical way for constructing the representative fragility curves is also recommended combining fragility curves of structures.

Sampling-based Approach for Seismic Probabilistic Risk Assessment (지진 확률론적 리스크 평가를 위한 샘플링기반 접근법)

  • Kwag, Shinyoung;Eem, Seunghyun;Park, Junhee;Choi, In-Kil
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.33 no.2
    • /
    • pp.129-136
    • /
    • 2020
  • In this study, we develop a sampling-based seismic probabilistic risk assessment (SPRA) quantification technique that can accurately consider a partially dependent condition of component seismic fragility information. Specifically, the SPRA quantification method is proposed by combining the advantages of two representative methodologies: EPRI seismic fragility and JAERI seismic fragility input-based quantification. The most important feature of the proposed method is that it performs a SPRA using a sampling technique by transforming the EPRI seismic fragility input into JAERI seismic fragility input. When the proposed sampling-based approach was applied to an example of simple system and to a SPRA problem of a nuclear power plant, it was observed that the proposed method yields approximately similar system seismic fragility and seismic risk results as those of the exact solution. Therefore, it is believed that the approach proposed in this study can be used as a useful tool for accurately assessing seismic risks, considering the partial seismic dependence among the components; the existing SPRA method cannot handle such partial dependencies.

Evaluation of Seismic Fragility Curve of Seismically Isolated Nuclear Power Plant Structures for Artificial Synthetic Earthquakes Corresponding to Maximum-Minimum Spectrum (최대-최소 스펙트럼에 대응하는 인공합성지진에 대한 면진된 원전구조물의 지진취약도 곡선 평가)

  • Kim, Hyeon-Jeong;Song, Jong-Keol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.2
    • /
    • pp.89-99
    • /
    • 2019
  • In order to increase the seismic safety of nuclear power plant (NPP) structures, a technique to reduce the seismic load transmitted to the NPP structure by using a seismic isolation device such as a lead-rubber bearing has recently been actively researched. In seismic design of NPP structures, three directional (two horizontal and one vertical directions) artificial synthetic earthquakes (G0 group) corresponding to the standard design spectrum are generally used. In this study, seismic analysis was performed by using three directional artificial synthetic earthquakes (M0 group) corresponding to the maximum-minimum spectrum reflecting uncertainty of incident direction of earthquake load. The design basis earthquake (DBE) and the beyond design basis earthquakes (BDBEs are equal to 150%, 167%, and 200% DBE) of G0 and M0 earthquake groups were respectively generated for 30 sets and used for the seismic analysis. The purpose of this study is to compare seismic responses and seismic fragility curves of seismically isolated NPP structures subjected to DBE and BDBE. From the seismic fragility curves, the probability of failure of the seismic isolation system when the peak ground acceleration (PGA) is 0.5 g is about 5% for the M0 earthquake group and about 3% for the G0 earthquake group.

Deep neural network for prediction of time-history seismic response of bridges

  • An, Hyojoon;Lee, Jong-Han
    • Structural Engineering and Mechanics
    • /
    • v.83 no.3
    • /
    • pp.401-413
    • /
    • 2022
  • The collapse of civil infrastructure due to natural disasters results in financial losses and many casualties. In particular, the recent increase in earthquake activities has highlighted on the importance of assessing the seismic performance and predicting the seismic risk of a structure. However, the nonlinear behavior of a structure and the uncertainty in ground motion complicate the accurate seismic response prediction of a structure. Artificial intelligence can overcome these limitations to reasonably predict the nonlinear behavior of structures. In this study, a deep learning-based algorithm was developed to estimate the time-history seismic response of bridge structures. The proposed deep neural network was trained using structural and ground motion parameters. The performance of the seismic response prediction algorithm showed the similar phase and magnitude to those of the time-history analysis in a single-degree-of-freedom system that exhibits nonlinear behavior as a main structural element. Then, the proposed algorithm was expanded to predict the seismic response and fragility prediction of a bridge system. The proposed deep neural network reasonably predicted the nonlinear seismic behavior of piers and bearings for approximately 93% and 87% of the test dataset, respectively. The results of the study also demonstrated that the proposed algorithm can be utilized to assess the seismic fragility of bridge components and system.

Probabilistic seismic demand models and fragility estimates for reinforced concrete bridges with base isolation

  • Gardoni, Paolo;Trejo, David
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.527-555
    • /
    • 2013
  • This paper proposes probabilistic models for estimating the seismic demands on reinforced concrete (RC) bridges with base isolation. The models consider the shear and deformation demands on the bridge columns and the deformation demand on the isolation devices. An experimental design is used to generate a population of bridges based on the AASHTO LRFD Bridge Design Specifications (AASHTO 2007) and the Caltrans' Seismic Design Criteria (Caltrans 1999). Ground motion records are used for time history analysis of each bridge to develop probabilistic models that are practical and are able to account for the uncertainties and biases in the current, common deterministic model. As application of the developed probabilistic models, a simple method is provided to determine the fragility of bridges. This work facilitates the reliability-based design for this type of bridges and contributes to the transition from limit state design to performance-based design.

Seismic Fragility Analysis based on Material Uncertainties of I-Shape Curved Steel Girder Bridge under Gyeongju Earthquake (강재 재료 불확실성을 고려한 I형 곡선 거더 교량의 경주 지진 기반 지진 취약도 분석)

  • Jeon, Juntai;Ju, Bu-Seog;Son, Ho-Young
    • Journal of the Society of Disaster Information
    • /
    • v.17 no.4
    • /
    • pp.747-754
    • /
    • 2021
  • Purpose: Seismic safety evaluation of a curved bridge must be performed since the curved bridges exhibit the complex behavior rather than the straight bridges, due to geometrical characteristics. In order to conduct the probabilistic seismic assessment of the curved bridge, Seismic fragility evaluation was performed using the uncertainty of the steel material properties of a curved bridge girde, in this study. Method: The finite element (FE) model using ABAQUS platform of the curved bridge girder was constructed, and the statistical parameters of steel materials presented in previous studies were used. 100 steel material models were sampled using the Latin Hypercube Sampling method. As an input ground motion in this study, seismic fragility evaluation was performed by the normalized scale of the Gyeongju earthquake to 0.2g, 0.5g, 0.8g, 1.2g, and 1.5g. Result: As a result of the seismic fragility evaluation of the curved girder, it was found that there was no failure up to 0.03g corresponding to the limit state of allowable stress design, but the failure was started from 0.11g associated with using limit state design. Conclusion: In this study, seismic fragility evaluation was performed considering steel materials uncertainties. Further it must be considered the seismic fragility of the curved bridge using both the uncertainties of input motions and material properties.

Correlation of Seismic Loss Functions Based on Stories and Core Locations in Vertical-Irregular Structures (연층을 갖는 수직 비정형 건축물의 층수 및 코어 위치에 따른 지진손실함수 상관관계 분석)

  • Hahn, SangJin;Shim, JungEun;Jeong, MinJae;Cho, JaeHyun;Kim, JunHee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.149-158
    • /
    • 2024
  • Piloti-type structures with vertical irregularity are vulnerable to earthquakes due to the soft structure of the first story. Structural characteristics of buildings can significantly affect the seismic loss function, calculated based on seismic fragility, and therefore need to be considered. This study investigated the effects of the number of stories and core locations on the seismic loss function of piloti-type buildings in Korea. Twelve analytical models were developed considering two variations: three stories (4-story, 5-story, and 6-story) and four core locations (center core, x-eccentric core, y-eccentric core, and xy-eccentric core). The interstory drift ratio and peak floor acceleration were assessed through incremental dynamic analysis using 44 earthquake records, and seismic fragility was derived. Seismic loss functions were calculated and compared using the derived seismic fragility and repair cost ratio of each component. The results indicate that the seismic loss function increases with more stories and when the core is eccentrically located in the piloti-type structure model. Therefore, the uncertainty due to the number of stories and core location should be considered when deriving the seismic loss function of piloti-type structures.

Uncertainty reduction of seismic fragility of intake tower using Bayesian Inference and Markov Chain Monte Carlo simulation

  • Alam, Jahangir;Kim, Dookie;Choi, Byounghan
    • Structural Engineering and Mechanics
    • /
    • v.63 no.1
    • /
    • pp.47-53
    • /
    • 2017
  • The fundamental goal of this study is to minimize the uncertainty of the median fragility curve and to assess the structural vulnerability under earthquake excitation. Bayesian Inference with Markov Chain Monte Carlo (MCMC) simulation has been presented for efficient collapse response assessment of the independent intake water tower. The intake tower is significantly used as a diversion type of the hydropower station for maintaining power plant, reservoir and spillway tunnel. Therefore, the seismic fragility assessment of the intake tower is a pivotal component for estimating total system risk of the reservoir. In this investigation, an asymmetrical independent slender reinforced concrete structure is considered. The Bayesian Inference method provides the flexibility to integrate the prior information of collapse response data with the numerical analysis results. The preliminary information of risk data can be obtained from various sources like experiments, existing studies, and simplified linear dynamic analysis or nonlinear static analysis. The conventional lognormal model is used for plotting the fragility curve using the data from time history simulation and nonlinear static pushover analysis respectively. The Bayesian Inference approach is applied for integrating the data from both analyses with the help of MCMC simulation. The method achieves meaningful improvement of uncertainty associated with the fragility curve, and provides significant statistical and computational efficiency.