• Title/Summary/Keyword: seismic events

Search Result 323, Processing Time 0.025 seconds

Seismic hazard assessment for two cities in Eastern Iran

  • Farzampour, Alireza;Kamali-Asl, Arash
    • Earthquakes and Structures
    • /
    • v.8 no.3
    • /
    • pp.681-697
    • /
    • 2015
  • Iran as one of the countries located on the Alpine-Himalayan seismic belt has recently experienced a few number of catastrophic earthquakes. A well-known index of how buildings are affected by earthquakes is through assessment of probable Peak Ground Acceleration (PGA) and structures' response spectra. In this research, active faults around Kerman and Birjand, two major cities in eastern parts of Iran, have been considered. Seismic catalogues are gathered to categorize effects of surrounding faults on seismicity of the region. These catalogues were further refined with respect to time and space based on Knopoff-Gardner algorithm in order to increase statistical independency of events. Probabilistic Seismic Hazard Analysis (PSHA) has been estimated for each of cities regarding 50, 100, 200 and 500 years of structures' effective life-span. These results subsequently have been compared with Deterministic Seismic Hazard Analysis (DSHA). It has been observed that DSHA not necessarily suggests upper bound of PSHA results. Furthermore, based on spectral Ground Motion Prediction Equations (GMPEs), Uniform Hazard Spectra (UHS) and spectral acceleration were provided for 2% and 10% levels of probability of exceedance. The results show that increasing source-to-site distance leads to spectral acceleration reduction regarding each fault. In addition, the spectral acceleration rate of variation would increase if the source-to-site distance decreases.

Mechanical robustness of AREVA NP's GAIA fuel design under seismic and LOCA excitations

  • Painter, Brian;Matthews, Brett;Louf, Pierre-Henri;Lebail, Herve;Marx, Veit
    • Nuclear Engineering and Technology
    • /
    • v.50 no.2
    • /
    • pp.292-296
    • /
    • 2018
  • Recent events in the nuclear industry have resulted in a movement towards increased seismic and LOCA excitations and requirements that challenge current fuel designs. AREVA NP's GAIA fuel design introduces unique and robust characteristics to resist the effects of seismic and LOCA excitations. For demanding seismic and LOCA scenarios, fuel assembly spacer grids can undergo plastic deformations. These plastic deformations must not prohibit the complete insertion of the control rod assemblies and the cooling of the fuel rods after the accident. The specific structure of the GAIA spacer grid produces a unique and stable compressive deformation mode which maintains the regular array of the fuel rods and guide tubes. The stability of the spacer grid allows it to absorb a significant amount of energy without a loss of load-carrying capacity. The GAIA-specific grid behavior is in contrast to the typical spacer grid, which is characterized by a buckling instability. The increased mechanical robustness of the GAIA spacer grid is advantageous in meeting the increased seismic and LOCA loadings and the associated safety requirements. The unique GAIA spacer grid behavior will be incorporated into AREVA NP's licensed methodologies to take full benefit of the increased mechanical robustness.

Seismic performance sensitivity to concrete strength variability: a case-study

  • Stefano, M. De;Tanganelli, M.;Viti, S.
    • Earthquakes and Structures
    • /
    • v.9 no.2
    • /
    • pp.321-337
    • /
    • 2015
  • Existing building structures can easily present material mechanical properties which can largely vary even within a single structure. The current European Technical Code, Eurocode 8, does not provide specific instructions to account for high variability in mechanical properties. As a consequence of the high strength variability, at the occurrence of seismic events, the structure may evidence unexpected phenomena, like torsional effects, with larger experienced deformations and, in turn, with reduced seismic performance. This work is focused on the reduction in seismic performance due to the concrete strength variability. The analysis has been performed on a case-study, i.e., a 3D RC framed 4 storey building. A Normal distribution, compatible to a large available database, has been taken to represent the concrete strength domain. Different plan layouts, representative of realistic strength distributions, have been considered, and a statistical analysis has been performed on the induced reduction in seismic performance. The obtained results have been compared to the standard analysis as provided by Eurocode 8 for existing buildings. The comparison has shown that the Eurocode 8 provisions are not conservative for existing buildings having a large variability in concrete strength.

Performance-based evaluation of strap-braced cold-formed steel frames using incremental dynamic analysis

  • Davani, M.R.;Hatami, S.;Zare, A.
    • Steel and Composite Structures
    • /
    • v.21 no.6
    • /
    • pp.1369-1388
    • /
    • 2016
  • This study is an effort to clearly recognize the seismic damages occurred in strap-braced cold formed steel frames. In order to serve this purpose, a detailed investigation was conducted on 9 full scale strap-braced CFS walls and the required data were derived from the results of the experiments. As a consequence, quantitative and qualitative damage indices have been proposed in three seismic performance levels. Moreover, in order to assess seismic performance of the strap-braced CFS frames, a total of 8 models categorized into three types are utilized. Based on the experimental results, structural characteristics are calculated and all frames have been modeled as single degree of freedom systems. Incremental dynamic analysis using OPENSEES software is utilized to calculate seismic demand of the strap-braced CFS walls. Finally, fragility curves are calculated based on three damage limit states proposed by this paper. The results showed that the use of cladding and other elements, which contribute positively to the lateral stiffness and strength, increase the efficiency of strap-braced CFS walls in seismic events.

A ductile steel damper-brace for low-damage framed structures

  • Javidan, Mohammad Mahdi;Kim, Jinkoo
    • Steel and Composite Structures
    • /
    • v.44 no.3
    • /
    • pp.325-337
    • /
    • 2022
  • In this research, an earthquake-resistant structural system consisting of a pin-connected steel frame and a bracing with metallic fuses is proposed. Contrary to the conventional braced frames, the main structural elements are deemed to remain elastic under earthquakes and the seismic energy is efficiently dissipated by the damper-braces with an amplification mechanism. The superiority of the proposed damping system lies in easy manufacture, high yield capacity and energy dissipation, and an effortless replacement of damaged fuses after earthquake events. Furthermore, the stiffness and the yield capacity are almost decoupled in the proposed damper-brace which makes it highly versatile for performance-based seismic design compared to most other dampers. A special attention is paid to derive the theoretical formulation for nonlinear behavior of the proposed damper-brace, which is verified using analytical results. Next, a direct displacement-based design procedure is provided for the proposed system and an example structure is designed and analyzed thoroughly to check its seismic performance. The results show that the proposed system designed with the provided procedure satisfies the given performance objective and can be used for developing highly efficient low-damage structures.

Effect of diurnal variation of background seismic noise level on earthquake detectability (지진관측소 배경잡음 수준의 일변화가 지진 관측 능력에 미치는 영향)

  • Sheen, Dong-Hoon;Shin, Jin-Soo
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2009.10a
    • /
    • pp.54-59
    • /
    • 2009
  • Seismic station of high noise level has difficulties detecting relatively weak ground motions due to small earthquakes or teleseismic events because earthquake detectability of seismic station depends on seismic noise level. To figure out the capability of earthquake detection of a seismic network, therefore, seismic noise level of each station also needs to be considered, including the distribution of seismic stations. Recently, it has been known that most of broadband seismic stations in South Korea have affected by cultural noise in the frequencies higher than 1 Hz and show diurnal variations of noise level. In order to analyze the effect of diurnal variation of seismic noise level on earthquake detectability, we used the result of background seismic noise level analysis of seismograms of 30 broadband stations of KIGAM and KMA from 2005 to 2007. This study shows that earthquakes greater than magnitude 2.4 occurring within the Korean Peninsula can be detected at night while those greater than magnitude 2.6 can be detected in the daytime.

  • PDF

Generation of Design Time History Complying With Japanese Seismic Design Standards for Nuclear Power Plants (일본 원전 내진설계 기술기준을 적용한 모의지진파(가속 도시간이력) 작성)

  • Gin, Seungmin;Kim, Yongbog;Lee, Yongsun;Moon, Il Hwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.25 no.2
    • /
    • pp.83-91
    • /
    • 2021
  • Seismic designs for Korean nuclear power plants (NPPs) under earthquakes' design basis are noticed due to the recent earthquake events in Korea and Japan. Japan has developed the technologies and experiences of the NPPs through theoretical research and experimental verification with extensively accumulated measurement data. This paper describes the main features of the design-time history complying with the Japanese seismic design standard. Proper seed motions in the earthquake catalog are used to generate one set of design time histories. A magnitude and epicentral distance specify the amplitude envelope function configuring the shape of the earthquake. Cumulative velocity response spectral values of the design time histories are compared and checked to the target response spectra. Spectral accelerations of the time histories and the multiple-damping target response spectra are also checked to exceed. The generated design time histories are input to the reactor building seismic analyses with fixed-base boundary conditions to calculate the seismic responses. Another set of design time histories is generated to comply with Korean seismic design procedures for NPPs and used for seismic input motions to the same reactor containment building seismic analyses. The responses at the dome apex of the building are compared and analyzed. The generated design time histories will be also applied to subsequent seismic analyses of other Korean standard NPP structures.

Application of robust fuzzy sliding-mode controller with fuzzy moving sliding surfaces for earthquake-excited structures

  • Alli, Hasan;Yakut, Oguz
    • Structural Engineering and Mechanics
    • /
    • v.26 no.5
    • /
    • pp.517-544
    • /
    • 2007
  • This study shows a fuzzy tuning scheme to fuzzy sliding mode controller (FSMC) for seismic isolation of earthquake-excited structures. The sliding surface can rotate in the phase plane in such a direction that the seismic isolation can be improved. Since ideal sliding mode control requires very fast switch on the input, which can not be provided by real actuators, some modifications to the conventional sliding-mode controller have been proposed based on fuzzy logic. A superior control performance has been obtained with FSMC to deal with problems of uncertainty, imprecision and time delay. Furthermore, using the fuzzy moving sliding surface, the excellent system response is obtained if comparing with the conventional sliding mode controller (SMC), as well as reducing chattering effect. For simulation validation of the proposed seismic response control, 16-floor tall building has been considered. Simulations for six different seismic events, Elcentro (1940), Hyogoken (1995), Northridge (1994), Takochi-oki (1968), the east-west acceleration component of D$\ddot{u}$zce and Bolu records of 1999 D$\ddot{u}$zce-Bolu earthquake in Turkey, have been performed for assessing the effectiveness of the proposed control approach. Then, the simulations have been presented with figures and tables. As a result, the performance of the proposed controller has been quite remarkable, compared with that of conventional SMC.

PROBABILISTIC SEISMIC ASSESSMENT OF BASE-ISOLATED NPPS SUBJECTED TO STRONG GROUND MOTIONS OF TOHOKU EARTHQUAKE

  • Ali, Ahmer;Hayah, Nadin Abu;Kim, Dookie;Cho, Ung Gook
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.699-706
    • /
    • 2014
  • The probabilistic seismic performance of a standard Korean nuclear power plant (NPP) with an idealized isolation is investigated in the present work. A probabilistic seismic hazard analysis (PSHA) of the Wolsong site on the Korean peninsula is performed by considering peak ground acceleration (PGA) as an earthquake intensity measure. A procedure is reported on the categorization and selection of two sets of ground motions of the Tohoku earthquake, i.e. long-period and common as Set A and Set B respectively, for the nonlinear time history response analysis of the base-isolated NPP. Limit state values as multiples of the displacement responses of the NPP base isolation are considered for the fragility estimation. The seismic risk of the NPP is further assessed by incorporation of the rate of frequency exceedance and conditional failure probability curves. Furthermore, this framework attempts to show the unacceptable performance of the isolated NPP in terms of the probabilistic distribution and annual probability of limit states. The comparative results for long and common ground motions are discussed to contribute to the future safety of nuclear facilities against drastic events like Tohoku.

Eco-friendly ductile cementitious composites (EDCC) technique for seismic upgrading of unreinforced masonry (URM) infill walls: A review of literature

  • Haider Ali, Abbas;Naida, Ademovic;Husain K., Jarallah
    • Earthquakes and Structures
    • /
    • v.23 no.6
    • /
    • pp.527-534
    • /
    • 2022
  • EDCC (Eco-Friendly Ductile Cementitious Composites) is a recently created class of engineered cementitious composites that exhibit extremely high ductility and elastoplastic behavior under pure tension. EDCC contains reduced amounts of cement and very large volumes of fly ash. Due to these properties, EDCC has become one of the solutions to use in seismic upgrading. This paper discloses previous studies and research that discussed the seismic upgrading of unreinforced, non-grouted, unconfined, and non-load bearing masonry walls which are called URM infill walls using the EDCC technique. URM infill wall is one of the weak links in the building structure to withstand the earthquake waves, as the brittle behavior of the URM infill walls behaves poorly during seismic events. The purpose of this study is to fill a knowledge gap about the theoretical and experimental ways to use the EDCC in URM infill walls. The findings reflect the ability of the EDCC to change the behavior from brittle to ductile to a certain percentage behavior, increasing the overall drift before collapse as it increases the energy dissipation, and resists significant shaking under extensive levels with various types and intensities.