• Title/Summary/Keyword: seismic effects

Search Result 1,140, Processing Time 0.026 seconds

Seismic response of nuclear containment structures due to recorded and simulated near-fault ground motions

  • Kurtulus Soyluk;Hamid Sadegh-Azar;Dersu Yilmaz
    • Structural Engineering and Mechanics
    • /
    • v.87 no.5
    • /
    • pp.431-450
    • /
    • 2023
  • In this study, it is intended to perform nonlinear time-history analyses of nuclear power plant structures (NPP) under near-fault earthquakes showing directivity pulse and fling-step characteristics. Simulation procedures based on cycloidal pulse and far-fault ground motions are also used to simulate near-fault motions showing forward-directivity and fling-step characteristics and the structural responses are compared with those of the recorded near-fault ground motions. Because it is aimed to determine specifically the pulse type characteristics of near-fault ground motions on NPPs, all the ground motions are normalized to have a PGA of 0.3 g. Depending on the obtained results it can be underlined that although near-fault ground motion has the potential to cause damage mostly on structural systems having larger periods, it may also have noticeable effects on the responses of rigid structures, like NPP containment buildings. On the other hand, simulated near-fault motions can help us to get an insight into the near-fault mechanism as well as an approximate visualization of the structural responses under near-fault earthquakes.

Analysis of beam-column joints reinforced with SMAs under monotonous loading with existence of transverse beam

  • Halahla, Abdulsamee M.;Tahnat, Yazan B. Abu;Dwaikat, Monther B.
    • Earthquakes and Structures
    • /
    • v.22 no.3
    • /
    • pp.231-243
    • /
    • 2022
  • Beam-column joints (BCJs) are recognized among the most crucial zones in reinforced concrete structures, as they are the critical elements subjected to a complex state of forces during a severe earthquake. Under such conditions, BCJs exhibit behaviors with impacts that extend to the whole structure and significantly influence its ductility and capability of dissipating energy. The focus of this paper is to investigate the effect of undamaged transverse beam (secondary beams) on the ductility of concrete BCJs reinforced with conventional steel and shape memory alloys bars using pushover analysis at tip of beam under different axial load levels at the column using a nonlinear finite element model in ABAQUS environment. A numerical model of a BCJ was constructed and the analysis outcomes were verified by comparing them to those obtained from previous experiments found in the literature. The comparison evidenced the capability of the calibrated model to predict the load capacity response of the joint. Results proved the ability of undamaged secondary beams to provide a noticeable improvement to the ductility of reinforced concrete joints, with a very negligible loss in load capacity. However, the effect of secondary beams can become less significant if the beams are damaged due to seismic effects. In addition, the axial load was found to significantly enhance the performance of BCJs, where the increase in axial load magnified the capacity of the joint. However, higher values of axial load resulted in greater initial stiffness of the BCJ.

Bond-slip Effect of Reinforced Concrete Building Structure under Seismic Load using Finite Element Analysis (유한요소해석을 활용한 지진하중에 대한 철근콘크리트 건축물의 부착성능 효과 연구)

  • Kim, Yeeun;Kim, Hyewon;Shin, Jiuk
    • Journal of Korean Association for Spatial Structures
    • /
    • v.22 no.4
    • /
    • pp.99-107
    • /
    • 2022
  • Existing reinforced concrete building structures constructed before 1988 have seismically-deficient reinforcing details, which can lead to the premature failure of the columns and beam-column joints. The premature failure was resulted from the inadequate bonding performance between the reinforcing bars and surrounding concrete on the main structural elements. This paper aims to quantify the bond-slip effect on the dynamic responses of reinforced concrete frame models using finite element analyses. The bond-slip behavior was modeled using an one-dimensional slide line model in LS-DYNA. The bond-slip models were varied with the bonding conditions and failure modes, and implemented to the well-validated finite element models. The dynamic responses of the frame models with the several bonding conditions were compared to the validated models reproducing the actual behavior. It verifies that the bond-slip effects significantly affected the dynamic responses of the reinforced concrete building structures.

An analytical solution for soil-lining interaction in a deep and circular tunnel (원형터널에서 지반-라이닝 상호작용에 대한 수학적 해석해에 관한 연구)

  • Lee, Seong-Won;Jeong, Jea-Hyeung;Kim, Chang-Yong;Bae, Gyu-Jin;Lee, Joo-Gong;Park, Kyung-Ho
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.11 no.4
    • /
    • pp.427-435
    • /
    • 2009
  • This study deals with the analytical solution for soil-lining interaction in a deep and circular tunnel. Simple closed-form analytical solutions for thrust and moment in the circular tunnel lining due to static and seismic loadings are developed by considering the relations between displacement and interaction forces at the soil-lining interface. The interaction effect at the soil-lining interface is considered with new ratios (the normal and shear stiffness ratios). The effects of the ratios on the normalized thrust and the normalized moment are investigated.

Beam models for continuous pipelines passing through liquefiable regions

  • Adil Yigit
    • Geomechanics and Engineering
    • /
    • v.37 no.2
    • /
    • pp.189-195
    • /
    • 2024
  • Buried pipelines can be classified as continuous and segmented pipelines. These infrastructures can be damaged either by ground movement or by seismic wave propagation during an earthquake. Permanent ground deformations (PGD) include surface faulting, liquefaction-induced lateral spreading and landslide. Liquefaction is a major problem for both superstructures and infrastructures. Buyukcekmece lake zone, which is the studied region in this paper, is a liquefaction prone area located near the North Anatolian Fault Line. It is an active fault line in Turkey and a major earthquake with a magnitude of around 7.5 is expected in this investigated region in Istanbul. It is planned to be constructed a new 12" steel natural gas pipeline from one side of the lake to the other side. In this study, this case has been examined in terms of two different support conditions. Firstly, it has been defined as a beam in liquefied soil and has built-in supports at both ends. In the other approach, this case has been modeled as a beam in liquefied soil and has vertical elastic pinned supports at both ends. These models have been examined and some solution proposals have been produced according to the obtained results. In this study, based on this sample, it is aimed to determine the behaviors of buried continuous pipelines subject to liquefaction effects in terms of buoyancy.

Experimental investigation of the excitation frequency effects on wall stress in a liquid storage tank considering soil-structure-fluid interaction

  • Diego Hernandez-Hernandez;Tam Larkin;Nawawi Chouw
    • Structural Engineering and Mechanics
    • /
    • v.89 no.4
    • /
    • pp.421-436
    • /
    • 2024
  • This research addresses experimentally the relationship between the excitation frequency and both hoop and axial wall stresses in a water storage tank. A low-density polyethylene tank with six different aspect ratios (water level to tank radius) was tested using a shake table. A laminar box with sand represents a soil site to simulate Soil-Structure Interaction (SSI). Sine excitations with eight frequencies that cover the first free vibration frequency of the tank-water system were applied. Additionally, Ricker wavelet excitations of two different dominant frequencies were considered. The maximum stresses are compared with those using a nonlinear elastic spring-mass model. The results reveal that the coincidence between the excitation frequency and the free-vibration frequency of the soil-tank-water system increases the sloshing intensity and the rigid-like body motion of the system, amplifying the stress development considerably. The relationship between the excitation frequency and wall stresses is nonlinear and depends simultaneously on both sloshing and uplift. In most cases, the maximum stresses using the nonlinear elastic spring-mass model agree with those from the experiments.

In-Structure Response Spectra of Seismically Isolated Shear Buildings Considering Eccentricity Effect (면진된 전단 거동 구조물의 층응답스펙트럼에 대한 편심효과)

  • Lee, Seung Jae;Kim, Jung Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.1-10
    • /
    • 2024
  • For important structures such as nuclear power plants, In-Structure Response Spectrum (ISRS) analysis is essential because it evaluates the safety of equipment and components installed in the structure. Because most structures are asymmetric, the response can be affected by eccentricity. In the case of seismically isolated structures, this effect can be greater due to the difference between the center of mass of the structure and the center of rigidity of the isolator layer. Therefore, eccentricity effects must be considered when designing or evaluating the ISRS of seismically isolated structures. This study investigated the change of the ISRS of an isolated structure by assuming accidental eccentricity. The variables that affect the ISRS of the isolated structure were analyzed to see what additional impact they had due to eccentricity. The ISRS of the seismically isolated structure with eccentricity was amplified more than when there was non-eccentricity, and it was boosted more significantly in specific period ranges depending on the isolator's initial stiffness and seismic intensity. Finally, whether the displacement requirement of isolators can be applied to the variation of the ISRS due to eccentricity in the design code was also examined.

Liquefaction hazard assessment in a GIS environment: A case study of Buğday Pazarı neighborhood in Çankırı province

  • Erenm Yurdakul;Sevkim Ozturk;Enderm Sarifakioglu
    • Geomechanics and Engineering
    • /
    • v.36 no.5
    • /
    • pp.455-464
    • /
    • 2024
  • Seismic movements have varying effects on structures based on characteristics of local site. During an earthquake, weak soils are susceptible to damage due to amplified wave amplitudes. Soil-structure interaction issue has garnered increased attention in Türkiye, after devastating earthquakes in Kocaeli Gölcük (1999), Izmir (2020), Kahramanmaraş Pazarcık and Elbistan (2023). Consequently, liquefaction potential has been investigated in detail for different regions of Türkiye, mainly with available field test results. Çankırı, a city located close to North Anatolian Fault, is mainly built on alluvium, which is prone to liquefaction. However, no study on liquefaction hazard has been conducted thus far. In this study, groundwater level map, SPT map, and liquefaction risk map have been generated using Geographical Information System (GIS) for the Buğday Pazarı District of Çankırı province. Site investigations studies previously performed for 47 parcels (76 boreholes) were used within the scope of this study. The liquefaction assessment was conducted using Seed and Idriss's (1971) simplified method and the visualization of areas susceptible to liquefaction risk has been accomplished. The results of this study have been compared with the City Council's precautionary map which is currently in use. As a result of this study, it is recommended that minimum depth of boreholes in the region should be at least 30m and adequate number of laboratory tests particularly in liquefiable areas should be performed. Another important recommendation for the region is that detailed investigation should be performed by local authorities since findings of this study differ from currently used precautionary map.

Sensitivity Analysis of Finite Fault Model in Stochastic Ground Motion Simulations (추계학적 지진동 모사에서 유한단층 모델의 민감도 분석)

  • Lee, Sang-Hyun;Rhie, Junkee
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.3
    • /
    • pp.159-164
    • /
    • 2024
  • Recent earthquakes in Korea, like Gyeongju and Pohang, have highlighted the need for accurate seismic hazard assessment. The lack of substantial ground motion data necessitates stochastic simulation methods, traditionally used with a simplistic point-source assumption. However, as earthquake magnitude increases, the influence of finite faults grows, demanding the adoption of finite faults in simulations for accurate ground motion estimates. We analyzed variations in simulated ground motions with and without the finite fault method for earthquakes with magnitude (Mw) ranging from 5.0 to 7.0, comparing pseudo-spectral acceleration. We also studied how slip distribution and hypocenter location affect simulations for a virtual earthquake that mimics the Gyeongju earthquake with Mw 5.4. Our findings reveal that finite fault effects become significant at magnitudes above Mw 5.8, particularly at high frequencies. Notably, near the hypocenter, the virtual earthquake's ground motion significantly changes using a finite fault model, especially with heterogeneous slip distribution. Therefore, applying finite fault models is crucial for simulating ground motions of large earthquakes (Mw ≥ 5.8 magnitude). Moreover, for accurate simulations of actual earthquakes with complex rupture processes having strong localized slips, incorporating finite faults is essential even for more minor earthquakes.

Shotcrete-Retrofit of Shear Walls with an Opening (개구부를 가지는 전단벽의 숏크리트 보강)

  • Choi, Youn-Cheul;Choi, Chang-Sik;Kim, Hyun-Min;Lee, Li-Hyung
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.5
    • /
    • pp.71-80
    • /
    • 2007
  • Because of the characteristics relating to high tensile ductility, High Performance Fiber Reinforced Cementitious Composites (HPFRCC) are studied to be adopted in repair and retrofit of buildings. A series of three shear wall specimens was tested under constant axial stress and reversed cyclic lateral loading in order to evaluate the seismic retrofit that had been proposed for the shear wall with the opening. The retrofit involved the use of newly developed ECC and MDF(Macro Defect Free), both of which are sprayed through the high pressure pump, over the entire face of the wall. The results indicate that two difference types of retrofitting strategy make the different effects of a rise in the strength and ductility of each specimen.