• 제목/요약/키워드: seismic effect

검색결과 1,562건 처리시간 0.025초

Seismic response control of buildings using shape memory alloys as smart material: State-of-the-Art review

  • Eswar, Moka;Chourasia, Ajay;Gopalakrishnan, N.
    • Earthquakes and Structures
    • /
    • 제23권2호
    • /
    • pp.207-219
    • /
    • 2022
  • Seismic response control has always been a grave concern with the damage and collapse of many buildings during the past earthquakes. While there are several existing techniques like base isolation, viscous damper, moment-resisting beam-column connections, tuned mass damper, etc., many of these are succumbing to either of large displacement, near-fault, and long-period earthquakes. Keeping this viewpoint, extensive research on the application of smart materials for seismic response control of buildings was attempted during the last decade. Shape Memory Alloy (SMA) with its unique properties of superelasticity and shape memory effect is one of the smart materials used for seismic control of buildings. In this paper, an exhaustive review has been compiled on the seismic control applications of SMA in buildings. Unique properties of SMA are discussed in detail and different phases of SMA along with crystal characteristics are illustrated. Consequently, various seismic control applications of SMA are discussed in terms of performance and compared with prevalent base isolators, bracings, beam-column connections, and tuned mass damper systems.

Investigation of seismic performance of super long-span cable-stayed bridges

  • Zhang, Xin-Jun;Zhao, Chen-Yang;Guo, Jian
    • Earthquakes and Structures
    • /
    • 제14권6호
    • /
    • pp.493-503
    • /
    • 2018
  • With the further increase of span length, the cable-stayed bridge tends to be more slender, and becomes more susceptible to the seismic action. By taking a super long-span cable-stayed bridge with main span of 1400m as example, structural response of the bridge under the E1 horizontal and vertical seismic excitations is investigated numerically by the multimode seismic response spectrum and time-history analysis respectively, the seismic behavior and also the effect of structural nonlinearity on the seismic response of super long-span cable-stayed bridge are revealed. Furthermore, the effect of structural parameters including the girder depth and width, the tower structural style, the tower height-to-span ratio, the side-tomain span ratio, the auxiliary piers in side spans and the anchorage system of stay cables etc on the seismic performance of super long-span cable-stayed bridge is investigated numerically by the multimode seismic response spectrum analysis, and the favorable earthquake-resistant structural system of super long-span cable-stayed bridge is proposed.

Seismic response of single-arch large-span fabricated subway station structure

  • He, Huafei;Li, Zhaoping
    • Earthquakes and Structures
    • /
    • 제23권1호
    • /
    • pp.101-113
    • /
    • 2022
  • A new type of fabricated subway station construction technology can effectively solve these problems. For a new type of metro structure form, it is necessary to clarify its mechanical properties, especially the seismic performance. A soil-structure elastoplastic finite element model is established to perform three-dimensional nonlinear dynamic time-history analysis based on the first fabricated station structure-Yuanjiadian station of Changchun Metro Line 2, China. Firstly, the nonlinear seismic response characteristics of the fabricated and cast-in-place subway stations under different seismic wave excitations are compared and analyzed. Then, a comprehensive analysis of several important parameters that may affect the seismic response of fabricated subway stations is given. The results show that the maximum plastic strain, the interlayer deformation, and the internal force of fabricated station structures are smaller than that of cast-in-place structure, which indicates that the fabricated station structure has good deformation coordination capability and mechanical properties. The seismic responses of fabricated stations were mainly affected by the soil-structure stiffness ratio, the soil inertia effect, and earthquake load conditions rarely mentioned in cast-in-place stations. The critical parameters have little effect on the interlayer deformation but significantly affect the joints' opening distance and contact stress, which can be used as the evaluation index of the seismic performance of fabricated station structures. The presented results can better understand the seismic responses and guide the seismic design of the fabricated station.

외부부착형 BCM공법으로 보강된 철근콘크리트 기둥의 내진보강 (Seismic Retrofitting of Existing Reinforced Concrete Columns Using Binding Column Method)

  • 허무원;박태원;이상현;박현수
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제26권5호
    • /
    • pp.119-126
    • /
    • 2022
  • 본 연구는 내진설계가 되어 있지 않은 필로티 건축물의 부족한 횡력을 보강할 수 있는 외부부착형 내진보강공법(Binding Column Method, BCM)을 제안하였다. 또한, 제안된 내진보강공법을 대상으로 보강실험체 4개, 기준 실험체 1개를 제작하여 반복가력 실험을 통하여 보강 전·후의 내진성능향상 효과를 검토하였다. 실험 결과, 기준 실험체(SC1)는 급격한 강도저하와 함께 취성적인 전단파괴의 양상을 나타낸 반면, BCM 공법을 적용한 실험체(SC2, SC3, SC4, SC5)는 강도 및 강성의 증가와 함께 에너지 흡수 능력이 큰 타원형의 이력특성을 나타내었다. 또한, 간격이 좁고 토크가 크며, L자형 강판의 두께가 두꺼울수록 보강효과가 향상됨을 알 수 있다. BCM공법 중 전단보강간격이 작고, 조임력 값이 크며, 연결철물이 두꺼운 SC4실험체가 가장 뛰어난 내진성능보강 효과를 나타내었다.

Assessment of effect of material properties on seismic response of a cantilever wall

  • Cakir, Tufan
    • Geomechanics and Engineering
    • /
    • 제13권4호
    • /
    • pp.601-619
    • /
    • 2017
  • Cantilever retaining wall movements generally depend on the intensity and duration of ground motion, the response of the soil underlying the wall, the response of the backfill, the structural rigidity, and soil-structure interaction (SSI). This paper investigates the effect of material properties on seismic response of backfill-cantilever retaining wall-soil/foundation interaction system considering SSI. The material properties varied include the modulus of elasticity, Poisson's ratio, and mass density of the wall material. A series of nonlinear time history analyses with variation of material properties of the cantilever retaining wall are carried out by using the suggested finite element model (FEM). The backfill and foundation soil are modelled as an elastoplastic medium obeying the Drucker-Prager yield criterion, and the backfill-wall interface behavior is taken into consideration by using interface elements between the wall and soil to allow for de-bonding. The viscous boundary model is used in three dimensions to consider radiational effect of the seismic waves through the soil medium. In the seismic analyses, North-South component of the ground motion recorded during August 17, 1999 Kocaeli Earthquake in Yarimca station is used. Dynamic equations of motions are solved by using Newmark's direct step-by-step integration method. The response quantities incorporate the lateral displacements of the wall relative to the moving base and the stresses in the wall in all directions. The results show that while the modulus of elasticity has a considerable effect on seismic behavior of cantilever retaining wall, the Poisson's ratio and mass density of the wall material have negligible effects on seismic response.

Effect of higher modes and multi-directional seismic excitations on power plant liquid storage pools

  • Eswaran, M.;Reddy, G.R.;Singh, R.K.
    • Earthquakes and Structures
    • /
    • 제8권3호
    • /
    • pp.779-799
    • /
    • 2015
  • The slosh height and the possibility of water spill from rectangular Spent Fuel Storage Bays (SFSB) and Tray Loading Bays (TLB) of Nuclear power plant (NPP) are studied during 0.2 g, Safe Shutdown Earthquake (SSE) level of earthquake. The slosh height obtained through Computational Fluid dynamics (CFD) is compared the values given by TID-7024 (Housner 1963) and American concrete institute (ACI) seismic codes. An equivalent amplitude method is used to compute the slosh height through CFD. Numerically computed slosh height for first mode of vibration is found to be in agreement the codal values. The combined effect in longitudinal and lateral directions are studied separately, and found that the slosh height is increased by 24.3% and 38.9% along length and width directions respectively. There is no liquid spillage under SSE level of earthquake data in SFSB and TLB at convective level and at free surface acceleration data. Since seismic design codes do not have guidelines for combined excitations and effect of higher modes for irregular geometries, this CFD procedure can be opted for any geometries to study effect of higher modes and combined three directional excitations.

기기의 면진을 통한 원전의 내진안전성 향상 (Improvement of Seismic Safety of Nuclear Power Plants by Equipment Isolations)

  • 전영선;최인길
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2003년도 춘계 학술발표회논문집
    • /
    • pp.93-100
    • /
    • 2003
  • Seismic isolation systems can improve the seismic safety of nuclear power plants by decreasing seismic force transmitted to structures and equipment. This study evaluates the effectiveness of equipment seismic isolation systems by the comparison of core damage frequencies in non-isolated and isolated cases. It can be found that the seismic isolation systems increase seismic capacity of nuclear equipment and decrease core damage frequencies significantly. The effect of equipment isolation is more significant in the PGA range of 0.3g to 0.5g.

  • PDF

Rational analysis model and seismic behaviour of tall bridge piers

  • Li, Jianzhong;Guan, Zhongguo;Liang, Zhiyao
    • Structural Engineering and Mechanics
    • /
    • 제51권1호
    • /
    • pp.131-140
    • /
    • 2014
  • This study focuses on seismic behaviour of tall piers characterized by high slender ratio. Two analysis models were developed based on elastic-plastic hinged beam element and elastic-plastic fiber beam element, respectively. The effect of the division density of elastic-plastic hinged beam element on seismic demand was discussed firstly to seek a rational analysis model for tall piers. Then structural seismic behaviour such as the formation of plastic hinges, the development of plastic zone, and the displacement at the top of the tall piers were investigated through incremental dynamic analysis. It showed that the seismic behaviour of a tall pier was quite different from that of a lower pier due to higher modes contributions. In a tall pier, an additional plastic zone may occur at the middle height of the pier with the increase of seismic excitation. Moreover, the maximum curvature reaction at the bottom section and maximum lateral displacement at the top turned out to be seriously out of phase for a tall pier due to the higher modes effect, and thus pushover analysis can not appropriately predict the local displacement capacity.

상호상관기법을 이용한 고분해능 천부해저탄성파탐사 자료에서의 너울효과 제거 (SUPPRESSION OF SWELL EFFECT IN HIGH-RESOLUTION MARINE SEISMIC DATA USING CROSS-CORRELATION SCHEME)

  • 김종천;이호영;김지수;강동효
    • 지구물리
    • /
    • 제6권1호
    • /
    • pp.31-38
    • /
    • 2003
  • 고분해능 천부해저탄성파탐사는 석유탐사에서 사용되는 다중채널 탄성파탐사를 소규모의 천부탐사에 적용한 것으로 단층의 1 m 내외 낙폭까지 구분해 낼 수 있을 만큼 분해능이 높은 탐사를 일컫는다. 육상탐사에서 천부 불균질대에 의한 반사영상의 왜곡처럼 해상 탐사에서는 일반적으로 바다에 항상 존재하는 1 m 내외의 파도에 의해서 그 분해능이 저하될 수 있는데 고분해능 해저 탄성파탐사에서는 이와 같은 너울효과를 제거함으로써 분해능을 향상시킬 수 있다. 기존의 인접심도 평균법을 극복하기 위해 새로이 상호상관 기법을 이용하여 개발된 방법은 해저면의 심도를 보다 정확히 추출함으로써 자료의 분해능을 크게 향상시키는 것으로 나타났다.

  • PDF

신뢰성 기반 쉴드 터널의 한계상태설계를 위한 지진하중 효과의 변동계수에 관한 연구 (A study on the coefficients of variation of seismic load effect for the limit state design of shield tunnel based on the reliability analysis)

  • 박영빈;김도;변요셉;이규필
    • 한국터널지하공간학회 논문집
    • /
    • 제22권3호
    • /
    • pp.311-321
    • /
    • 2020
  • 본 연구에서는 쉴드 터널 세그먼트 라이닝의 한계상태설계 시 세그먼트 라이닝에 작용하는 지진하중에 대한 변동계수를 산정하였다. 지반 정수의 통계적 특성치는 국내 지반의 확률특성치를 분석하여 단위중량에 대한 통계적 특성치를 산정하였으며, 전단탄성파 속도를 산정하기 위해 N값과 확률 특성치를 이용하였다. 지진하중 효과에 대한 변동계수를 산정하기 위하여 MCS기법을 적용하였으며, 지진하중 효과 산정에는 closed-form식을 적용하였다. 변동계수 산정결과, 풍화토 지반에서 지진하중 효과의 변동계수는 0.06~0.15의 범위로 분석되었고, 변동계수는 지진을 고려한 쉴드 터널의 한계상태설계 시 기본자료로 활용할 수 있을 것으로 판단된다.