• Title/Summary/Keyword: seismic earthquake response

Search Result 1,592, Processing Time 0.024 seconds

Performance Evaluation of Semi-Active Tuned Mass Damper for Elastic and Inelastic Seismic Response Control (준능동 동조질량감쇠기의 탄성 및 비탄성 지진응답 제어성능 평가)

  • Lee, Sang-Hyun;Chung, Lan;Woo, Sung-Sik;Cho, Seung-Ho
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.2 s.54
    • /
    • pp.47-56
    • /
    • 2007
  • In this study, tile performance of a passive tuned mass damper (TMD) and a semi-active tuned mass damper (STMD) was evaluated in terms of seismic response control of elastic and inelastic structures under seismic loads. First, elastic displacement spectra were obtained for the damped structures with a passive TMD, which was optimally designed using the frequency and damping ratio presented by previous study, and with a STMD proposed in this study. The displacement spectra confirm that STMD provides much better control performance than passive md with less stroke. Also, the robustness or the TMD was evaluated by off-tuning the frequency of the TMD to that of the structure. Finally, numerical analyses were conducted for an inelastic structure of which hysteresis was described by Bouc-Wen model and the results indicated that the performance of the passive TMD of which design parameters were optimized for a elastic structure considerably deteriorated when the hysteretic portion or the structural responses increased, while the STMD showed about 15-40% more response reduction than the TMD.

Fragility Analysis of A Scaled Model of Reinforced Concrete Column in Accordance with Similitude Law (상사법칙이 적용된 철근콘크리트 기둥 축소모형의 지진 취약도 분석)

  • Park, Dong Uk;Jeon, Bub Gyu;Kim, Nam Sik;Park, Jamin;Cho, Jae-Yeol
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.87-93
    • /
    • 2017
  • Many studies are conducted in several fields for fragility analysis of structures or elements which is a probabilistic seismic safety analysis in consideration with uncertainty of seismic loading. It is hard to directly conduct fragility analysis for an infrastructure with social importance due to its size. Therefore, a fragility analysis for an infrastructure mainly conducted in element level or conducted with scaled model built in accordance with similarity law. In this article, fragility analysis for prototype and scaled model of reinforced concrete column was conducted with numerical models which had been updated by the results of shaking table test and pseudo dynamic test. As a result, response stress from the numerical analysis result of prototype model was higher than that from scaled model due to different stiffness ratios between steel and concrete. However, the probability of failure for scaled model was higher than that for prototype model because failure criteria for scaled model was down due to similarity law. Also it was evaluated that probability of failure by using log normal standard deviation of response stresses by spectrum matched accelerograms was more reliable than probability of failure by using existing coefficient of variation normally used.

Effects of Significant Duration of Ground Motions on Seismic Responses of Base-Isolated Nuclear Power Plants (지진의 지속시간이 면진원전의 지진거동에 미치는 영향)

  • Nguyen, Duy-Duan;Thusa, Bidhek;Lee, Tae-Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.149-157
    • /
    • 2019
  • The purpose of this study is to investigate the effects of the significant duration of ground motions on responses of base-isolated nuclear power plants (NPPs). Two sets of ground motion records with short duration (SD) and long duration (LD) motions, scaled to match the target response spectrum, are used to perform time-history analyses. The reactor containment building in the Advanced Power Reactor 1400 (APR1400) NPP is numerically modeled using lumped-mass stick elements in SAP2000. Seismic responses of the base-isolated NPP are monitored in forms of lateral displacements, shear forces, floor response spectra of the containment building, and hysteretic energy of the lead rubber bearing (LRB). Fragility curves for different limit states, which are defined based on the shear deformation of the base isolator, are developed. The numerical results reveal that the average seismic responses of base-isolated NPP under SD and LD motion sets were shown to be mostly identical. For PGA larger than 0.4g, the mean deformation of LRB for LD motions was bigger than that for SD ones due to a higher hysteretic energy of LRB produced in LD shakings. Under LD motions, median parameters of fragility functions for three limit states were reduced by 12% to 15% compared to that due to SD motions. This clearly indicates that it is important to select ground motions with both SD and LD proportionally in the seismic evaluation of NPP structures.

Analysis of geotechnical Seismic Sensitivity in Kyeongju (경주 지역의 지반공학적 지진 민감도 분석)

  • 선창국
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.130-140
    • /
    • 2000
  • The earthquake hazard has been evaluated for 10km by 10km area around Kyeongju which is located near Yangsan fault and has abundant historical earthquake records. The ground motion potentials were determined based on equivalent linear analysis by using the data obtained from in situ and laboratory tests and the El centro eartqhuake record scaled to CLE and OLE of the region. The in situ tests include 9 boring investigations 2 crosshole 7 downhole 13 SASW tests and in the laboratory X-ray diffraction analyses and resonant column tests were performed. The peak ground accelerations range between 0.140g and 0.286g on CLE and between 0.051g and 0.116g on OLE respectively showing the good potential of amplification in the deep alluvial layer which is common in Kyeongju area. the response spectrum based on the Korea design guide was sometimes underestimate the motion. particularly near the natural period of the site and the importance of site-specific analysis and need for the improved site categorization method were introduced.

  • PDF

A study on the characteristics of friction pendulum isolation bearings (마찰진자형 면진베어링의 특성 연구)

  • 김영중
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.10a
    • /
    • pp.407-414
    • /
    • 2000
  • The friction pendulum type seismic isolation system (FPS) has been developed to provide a simple and effective way to achieve earthquake resistance for buildings . The major advantages are: the isolation frequency can be easily achieved by designing a curvature of the surface and does not depend on the supported weight of a structure. The function of carrying vertical load is separated to the function of providing horizontal stiffness. Next the friction provides sufficient energy dissipation to protect the structure from earthquake response and resistance to the weak external disturbances such as wind load and ground vibrations due to traffic. In this paper, the friction coefficients are evaluated from number of experiments on the FPS test specimens. The relations between friction coefficient and the test waveform, velocity, and pressure are reviewed and further works are discussed.

  • PDF

Design of Viscoelastic Dampers Using Effective Damping Ratio (유효감쇠비를 이용한 점탄성 감쇠기의 설계)

  • 최현훈;김진구
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.371-378
    • /
    • 2001
  • To enhance seismic performance of a structure ATC-40 and FEMA-273 propose technical strategies such as increasing strength, altering stiffness, and reducing demand by employing base isolation and energy dissipation devices. Specifically the energy dissipation devices directly increase the ability of the structure to dampen earthquake response. However nonlinear dynamic time history analysis of a structure with energy dissipation devices is complicated and time consuming. In this study a simple and straightforward procedure is developed using effective damping ratio to obtain the required amount of viscoelastic dampers in order to meet given performance objectives. Parametric study has been performed for the period of the structure, yield strength, and the stiffness after the first yield. According to the analysis results, earthquake demand and required damping ratio were reduced by installing viscoelastic dampers. The results also show that with the addition of the supplemental damping evaluted by the proposed method the performance of the model structures are well restrained within the target point.

  • PDF

Research of Plastic response by Quasi-Static Test for Circulr Hollow R.C. Bridge Pier (준정적 실험에 의한 중공원형 콘크리트 교각의 소성응답 연구)

  • 정영수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.04a
    • /
    • pp.247-255
    • /
    • 1999
  • Because of relatively heavy dead weight of concrete itself and unavoidable heat of massive concrete in bridge piers circular hollow columns are widely used in Korean highway bridges Since the occurrence of 1995 Kobe earthquake there have been much concern about seismic design for various infrastructures inclusive of bridge structures. It is however understood that there are not much research works for nonlinear behavior circular hollow columns subjected to earthquake motions. The ultimate of this experimental research is to investigate nonlinear behavior of hollow reinforced concrete bridge piers under the quasi-static cyclic load test and than to enhance their ductility by strengthening the plastic hinge region with glassfiber sheets. It can be concluded from Quasi-static test for 7 bridge piers that approximate 4-5 ductility factor can be experimentally obtained for bridge piers nonseismically designed in conventional way which approximate 5-6 ductility factor for those seismically designed.

  • PDF

Effects of excitation characteristics on the equivalent linear system of a building structure with MR dampers (MR감쇠기가 설치된 구조물의 등가선형 시스템에 대한 가진 특성의 영향)

  • Park, Ji-Hun;Min, Kyung-Won;Moon, Byoung-Wook;Park, Eun-Churn
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.503-510
    • /
    • 2006
  • Seismic control performance of MR dampers, which have severe nonlinearity, differs with respect to the dynamic characteristics of an earthquake such as magnitude, frequency and duration. In this study, the effects of excitation characteristics on the equivalent linear system of a building structure with an MR damper are investigated through numerical analysis for artificial ground motions generated from different response spectrums. The equivalent damping ratio of the structure with an MR damper is calculated using Newmark and Hall's equations for ground motion amplification factors. It is found that the equivalent damping ratio of the structure with the MR damper is dependent on the ratio of the maximum friction force of the MR damper over excitation magnitude. Frequency contents of the earthquake ground motion affects the equivalent damping ratio of long-period structures considerably. Also, additional damping effect caused by interaction between the viscousity and friction of the MR damper is observed.

  • PDF

Seismic Reliability Analysis of Offshore Wind Turbine Support Structure (해상풍력발전기 지지구조물의 지진신뢰성해석)

  • Lee, Gee-Nam;Kim, Dong-Hyawn
    • Journal of Ocean Engineering and Technology
    • /
    • v.29 no.5
    • /
    • pp.342-350
    • /
    • 2015
  • A seismic reliability analysis of the jacket-type support structure for an offshore wind turbine was performed. When defining the limit state function using the dynamic response of the support structure, numerous dynamic calculations should be performedin an approach like the FORM (first-order reliability method). This causes a substantial increase in the analysis cost. Therefore, in this paper, a new reliability analysis approach using the static response is used. The dynamic effect of the response is considered by introducing a new parameter called the peak response factor (PRF). The probability distribution of the PRF could be estimated using the peak value of the dynamic response. The probability distribution of the PRF was obtained for a set of ground motions. A numerical example is considered to compare the proposed approach with the conventional static-response-based approach.

Acceleration amplification characteristics of embankment reinforced with rubble mound

  • Jung-Won Yun;Jin-Tae Han;Jae-Kwang Ahn
    • Geomechanics and Engineering
    • /
    • v.36 no.2
    • /
    • pp.157-166
    • /
    • 2024
  • Generally, the rubble mound installed on the slope embankment of the open-type wharf is designed based on the impact of wave force, with no consideration for the impact of seismic force. Therefore, in this study, dynamic centrifuge model test results were analyzed to examine the acceleration amplification of embankment reinforced with rubble mound under seismic conditions. The experimental results show that when rubble mounds were installed on the ground surface of the embankment, acceleration response of embankment decreased by approximately 22%, and imbalance in ground settlement decreased significantly from eight to two times. Furthermore, based on the experimental results, one-dimensional site response (1DSR) analyses were conducted. The analysis results indicated that reinforcing the embankment with rubble mound can decrease the peak ground acceleration (PGA) and short period response (below 0.6 seconds) of the ground surface by approximately 28%. However, no significant impact on the long period response (above 0.6 seconds) was observed. Additionally, in ground with lower relative density, a significant decrease in response and wide range of reduced periods were observed. Considering that the reduced short period range corresponds to the critical periods in the design response spectrum, reinforcing the loose ground with rubble mound can effectively decrease the acceleration response of the ground surface.