• Title/Summary/Keyword: seismic earthquake response

Search Result 1,592, Processing Time 0.022 seconds

Seismic Response Analysis of Wind-Designed Concentrically Braced Steel Highrise Buildings (내풍설계된 초고층 철골중심가새골조의 지진응답 해석)

  • 이철호;김선웅
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.10a
    • /
    • pp.60-67
    • /
    • 2004
  • The designer of a tall building even in moderate and low seismic regions should, in finalizing the desist consider the probable impact of the design basis earthquake on the selected structural system. In this study, seismic response analysis was conducted to evaluate the seismic performance of concentrically braced steel highrise buildings which were designed only for governing wind loading under moderate seismicity. The main purpose of this analysis was to see if the wind design would create a system whose elastic capacity clearly exceeds the probable demand as suggested by the design basis earthquake. The strength demand-to-capacity study revealed that the wind-designed steel highrise buildings with the aspect ratio of larger than five can withstand the design basis earthquake elastically by a sufficient margin due to the system over-strength resulting from the wind-serviceability criterion. The maximum story drift demand from the design basis earthquake was just 0.25% (or half the limit of Immediate Occupancy performance level in FEMA 273)

  • PDF

Effect of Bouc-Wen Model and Earthquake Characteristics for Responses of Seismically Isolated Nuclear Power Plant by Lead-Rubber Bearing (납-고무 받침에 의해 면진된 원전구조물의 응답에 대한 Bouc-Wen 모델 및 지진특성의 영향)

  • Song, Jong-Keol;Son, Min-Kyun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.2
    • /
    • pp.95-103
    • /
    • 2017
  • In order to modeling seismic isolation system such as lead-rubber bearing (LRB), bilinear model is widely used by many researchers. In general, an actual force-displacement relationship for LRB has a smooth hysteretic shape. So, Bouc-Wen model with smooth hysteretic shape represents more accurately actual hysteretic shape than bilinear model. In this study, seismic responses for seismically isolated nuclear power plant (NPP) with LRB modelled by Bouc-Wen and bilinear models are compared with those of NPP without seismic isolation system. To evaluate effect of earthquake characteristics for seismic responses of NPP isolated by LRB, 5 different site class earthquakes distinguished by Geomatrix 3rd Letter Site Classification and artificially generated earthquakes corresponding to standard design spectrum by Reg. Guide 1.60 are used as input earthquakes. From the seismic response results of seismically isolated NPP, it can be observed that maximum displacements of seismic isolation modelled by Bouc-Wen model are larger than those by bilinear model. Seismic responses of NPP with LRB is significantly reduced than those without LRB. This reduction effect for seismic responses of NPP subjected to Site A (rock) earthquakes is larger than that to Site E (soft soil) earthquakes.

Dynamic response of a fuel assembly for a KSNP design earthquake

  • Jhung, Myung Jo;Choi, Youngin;Oh, Changsik
    • Nuclear Engineering and Technology
    • /
    • v.54 no.9
    • /
    • pp.3353-3360
    • /
    • 2022
  • Using data from the design earthquake of the Korean standard nuclear power plant, seismic analyses of a fuel assembly are conducted in this study. The modal characteristics are used to develop an input deck for the seismic analysis. With a time history analysis, the responses of the fuel assembly in the event of an earthquake are obtained. In particular, the displacement, velocity, and acceleration responses at the center location of the fuel assembly are obtained in the time domain, with these outcomes then used for a detailed structural analysis of the fuel rods in the ensuing analyses. The response spectra are also generated to determine the response characteristics in the frequency domain. The structural integrity of the fuel assembly can be ensured through this type of time history analysis considering the input excitations of various earthquakes considered in the design.

Seismic Response Analysis Method of Bridge Considering Foundation-Soil Interaction and Multi-support Input Motion (기초-지반 상호작용을 고려한 교량의 다지점 입력 지진해석 기법)

  • Kim, Hyo-Gun;Choi, Kwang-Kyu;Eom, Young-Ho;Kwon, Young-Rog
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2006.03a
    • /
    • pp.284-291
    • /
    • 2006
  • This paper presents a seismic response analysis of bridge structures considering foundation-soil interaction and multi-support input motion. In the earthquake analysis of structures it is usually assumed that the input ground motion is the same at all supports. However, this assumption is not justified for long structures like bridges, because observations have shown the earthquake ground motion can vary considerably within relatively small distances. When the soil under the foundation is relatively soft and deep, analysis for foundation-soil interaction always must be peformed. To consider foundation-soil interaction, soil response analysis is preceded, and after determining the material characteristics of foundation element obtained by foundation-soil interaction analysis at the frequency domain, the seismic response analysis of bridge superstructure with the equivalent spring and damper is performed. Finally, influences of multi-support input motion, which are affected by different soil characteristics, are also considered in this paper.

  • PDF

Earthquake response of a core shroud for APR1400

  • Jhung, Myung Jo;Choi, Youngin;Oh, Chang-Sik
    • Nuclear Engineering and Technology
    • /
    • v.53 no.8
    • /
    • pp.2716-2727
    • /
    • 2021
  • The core shroud is one of the most important internal components of the reactor vessel internals because it meets the neutron fluence directly emitted by the nuclear fuel. In particular, dynamic effects for an earthquake should be evaluated with respect to the neutron irradiation flux. As a prerequisite to this study, simplified and detailed finite element models are developed for the core shroud using the ANSYS Design Parametric Language. Using the El Centro earthquake, seismic analyses are performed for the simplified and detailed core shroud models. Modal characteristics are obtained and their results are used for a time history analysis. Response spectrum analyses are also performed to access the degree of seismic excitation. The results of these analyses are compared to investigate the response characteristics between the simplified and detailed core shroud models from the time history and response spectrum analyses.

Study on Seismic Performance Evaluation and Verification of Seismic Safety for Power Cable Tunnels (개착식 전력구의 내진성능 평가 및 내진 안전성 검증)

  • Hwang, Kyeong-min;Chun, Nak-hyun;Chung, Gil-young;Park, Kyung-sung
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.4
    • /
    • pp.439-445
    • /
    • 2020
  • In this paper, the seismic performance evaluation was performed on 100 existing open-cut power cable tunnels, including ones that did not consider seismic design, in order to verify that the government's demand level (seismic special grade, 0.22 g). The results of the seismic performance evaluation show that most of the tunnels have seismic performance of 0.3 to 1 g, satisfying the level of the seismic special grade and securing the seismic safety. Meanwhile, the earthquake response analysis and structural test were performed to verify the validity of the method and the results of the seismic performance evaluation of the tunnels by the response displacement method, and to verify their seismic safety. As a result, the relative displacement due to the response displacement method under the 0.22 g earthquake was conservative than the results of the earthquake response analysis, and the results of load-displacement curves and response modification coefficient calculation by real scale structural tests showed the safety of the tunnels.

Seismic Response Tests of 1/8 Scale Model for a Spent Fuel Dry Storage Cask (사용후 연료 건식저장요기 1/8 규모 축소모형 지진응답시험)

  • Lee, J.H.;Koo, G.H.;Seo, G.S.;Lee, H.Y.;Choi, B.I.;Yeom, S.H.
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2005.03a
    • /
    • pp.55-61
    • /
    • 2005
  • The seismic response tests of a spent fuel dry storage cask model of 1/8 scale are performed for an typical 1940 Elcentro earthquake. This paper focuses on the seismic response test data generation to check the overturing possibility of a storage cask and the slipping displacement on concrete slab bed. A simplified cask model is used to take into account the variations in seismic load magnitude and cask/bed interface friction. The test results show that the model gives an overturning response for an extreme condition.

  • PDF

A study on seismic behaviour of masonry mosques after restoration

  • Altunisik, Ahmet C.;Bayraktar, Alemdar;Genc, Ali F.
    • Earthquakes and Structures
    • /
    • v.10 no.6
    • /
    • pp.1331-1346
    • /
    • 2016
  • Historical masonry structures have an important value for cultures and it is essential for every society to strengthen them and confidently transfer to the future. For this reason, determination of the seismic earthquake response, which is the most affecting factor to cause the damage at these structures, gain more importance. In this paper, the seismic earthquake behaviour of Kaya Çelebi Mosque, which is located in Turkey and the restoration process has still continued after 2011 Van earthquake, is determined. Firstly the dynamic modal analysis and subsequently the seismic spectral analysis are performed using the finite element model of the mosque constructed with restoration drawings in SAP2000 program. Maximum displacements, tensile, compressive and shear stresses are obtained and presented with contours diagrams. Turkish Earthquake Code and its general technical specifications are considered to evaluate the structural responses. After the analyses, it is seen that the displacements and compressive/shear stresses within the code limits. However, tension stresses exceeded the maximum values at some local regions. For this mosque, this is in tolerance limits considering the whole structure. But, it can be said that the tension stresses is very important for this type of the structures, especially between the stone and mortar. So, some additional strengthening solutions considering the originality of historical structures may be applicable on maximum tensile regions.

Seismic performance of RC frame having low strength concrete: Experimental and numerical studies

  • Rizwan, Muhammad;Ahmad, Naveed;Khan, Akhtar Naeem
    • Earthquakes and Structures
    • /
    • v.17 no.1
    • /
    • pp.75-89
    • /
    • 2019
  • The paper presents experimental and numerical studies carried out on low-rise RC frames, typically found in developing countries. Shake table tests were conducted on 1:3 reduced scaled two-story RC frames that included a code conforming SMRF model and another non-compliant model. The later was similar to the code conforming model, except, it was prepared in concrete having strength 33% lower than the design specified, which is commonly found in the region. The models were tested on shake table, through multiple excitations, using acceleration time history of 1994 Northridge earthquake, which was linearly scaled for multi-levels excitations in order to study the structures' damage mechanism and measure the structural response. A representative numerical model was prepared in finite element based program SeismoStruct, simulating the observed local damage mechanisms (bar-slip and joint shear hinging), for seismic analysis of RC frames having weaker beam-column joints. A suite of spectrum compatible acceleration records was obtained from PEER for incremental dynamic analysis of considered RC frames. The seismic performance of considered RC frames was quantified in terms of seismic response parameters (seismic response modification, overstrength and displacement amplification factors), for critical comparison.

Dynamic Response of Seismically Isolated High-Story Buildings according to Earthquake Records (지진기록 사용에 따른 고층 면진건물의 동적 응답)

  • Lee, Hyun-Ho
    • Journal of the Korea Concrete Institute
    • /
    • v.20 no.5
    • /
    • pp.643-651
    • /
    • 2008
  • The purpose of this study is to evaluate seismic capacity of seismically isolated building according to the earthquake motion record selection method. To analyze the seismic behavior, 20-story building is designed, which has base isolation system. The using earthquake motion record were selected by two categories. The one is a proposed earthquake record according to soil type and response spectrum shape, and the other is a well known earthquake events such as El Centro (1940). The time history analysis results of base isolation buildings be induced difference results according to each ground motion records. Therefore detailed guidelines for the ground motion records selection method must be prepared. And the response of isolation story displacement and shear force show good seismic performance in consideration of the proposed earthquake records.