• Title/Summary/Keyword: seismic earthquake response

Search Result 1,592, Processing Time 0.023 seconds

Application of subspace identification on the recorded seismic response data of Pacoima Dam

  • Yu, I-No;Huang, Shieh-Kung;Loh, Kenneth J.;Loh, Chin-Hsiung
    • Structural Monitoring and Maintenance
    • /
    • v.6 no.4
    • /
    • pp.347-364
    • /
    • 2019
  • Two seismic response data from the CSMIP strong motion instrumentation of Pacoima dam are selected: San Fernando earthquake (Jan 13, 2001; ML=4.3) and Newhall earthquake (Sept. 1, 2011; ML=4.2), for the identification of the dam system. To consider the spatially nonuniform input ground motion along the dam abutment, the subspace identification technique with multiple-input and multiple-output is used to extract the dynamic behavior of the dam-reservoir interaction system. It is observed that the dam-reservoir interaction is significant from the identification of San Fernando earthquake data. The influence of added mass (from the reservoir) during strong ground motion will create a tuned-mass damper phenomenon on the dam body. The fundamental frequency of the dam will be tuned to two different frequencies but with the same mode shapes. As for the small earthquake event, the dam-reservoir interaction is insignificant.

Experimental Study on the Seismic Response of High-Rise RC Bearing-Wall Structures with Irregularity (고층 RC 벽식 비정정 구조물의 지진거동에 관한 실험적 연구)

  • 이한선;고동우
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2003.03a
    • /
    • pp.321-328
    • /
    • 2003
  • The objective of this study is to investigate the seismic response of high-rise RC bearing-wall structures with irregularity. For this purpose, three 1:12 scale 17-story reinforced concrete model structures were constructed according to the similitude law, in which the upper 15 stories have a bearing-wall system while the lower 2-story frames have three different layouts of the plan : The first one is a moment-resisting frame system, the second has a infilled shear wall with symmetric plan and the third has a infilled shear wall with eccentricity, Then, these models were subjected to a series of earthquake excitations. The test results show the followings: 1) the existence of shear wall reduced greatly shear deformation at the piloti frame, but has almost the negligible effect on the reduction of the overturning-moment angle, 2) the frame with shear wall resists most of overturning moment in severe earthquake, 3) the torsional behavior is almost independent of the translational, 4) the absorbed energy due to the overturning deformation has the largest portion in the total absorbed energy.

  • PDF

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Dynamic Analysis and Structural Safety Evaluation of the Cabinet of a Reactor Safety System (원자로 보호계통 캐비닛의 동해석과 구조 안전성 평가)

  • Lee, Boo-Youn;Cho, Chung-Rae;Kim, Won-Jin;Jeong, Dong-Gwan;Shon, Jae-Youl
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.22 no.12 s.177
    • /
    • pp.131-140
    • /
    • 2005
  • Responses of the cabinet of the reactor safety system under seismic leadings are analyzed, its dynamic characteristics and structural reliability being evaluated. Analyzed natural frequencies are compared with those measured from a resonance test. Structural safety of the cabinet is evaluated in consideration of the required response spectrums of the operation-base and safe-shutdown earthquakes. Transient responses of the cabinet are analyzed with input ground acceleration measured during the seismic test, accelerations being extracted at the locations of the main internal parts. The transient responses are compared with those from the seismic test, favorable results being shown.

The Engineering Characteristics of Seismicity of Korean Peninsula in 2000 (2000년도 한반도 지진활동의 공학적 특성)

  • 이전희
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2001.04a
    • /
    • pp.81-90
    • /
    • 2001
  • Several seismic traces of earthquakes observed from the digital new type seismograph instruments of KMA in 2000 were scanned. From these, good quality data which have high signal/noise ratio were selected and they were transformed into ascii data from binary data(min-seed format). The hypo71 program and P-S was applied in order to determine the location of epicenter, origin time and the magnitude. From these data, the 29 earthquakes, 358 seismic records consist of 587 directional components were calculated. Using these, ground acceleration data, acceleration, velocity, and displacemnet response spectrums of the structures were calculated and they could be represented in a picture by the form of tripartite response spectrum. In the result, response spectrums of the 587 directional components of the above seismic data records were obtained respectively.

  • PDF

Assessment of Code-specified Ground Motion Selection Criteria with Accurate Selection and Scaling Methods - I Ground Motion Selection (구조물 동적해석을 위한 현행 내진설계기준의 입력 지반 운동 선정 조건 타당성 평가 - I 선정방법)

  • Ha, Seong Jin;Han, Sang Whan;Ji, Hyun Woo
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.4
    • /
    • pp.171-179
    • /
    • 2017
  • For estimating the seismic demand of buildings, most seismic design provisions permit conducting linear and nonlinear response history analysis. In order to obtain reliable results from response history analyses, a proper selection of input ground motions is required. In this study, an accurate algorithm for selecting and scaling ground motions is proposed, which satisfies the ASCE 7-10 criteria. In the proposed algorithm, a desired number of ground motions are sequentially scaled and selected from a ground motion library without iterations.

Effect of soil-structure interaction for a building isolated with FPS

  • Krishnamoorthy, A.
    • Earthquakes and Structures
    • /
    • v.4 no.3
    • /
    • pp.285-297
    • /
    • 2013
  • The effect of soil structure interaction (SSI) on seismic response of a multi-degree-of-freedom structure isolated with a friction pendulum system (FPS) is studied. In the analysis, the soil is considered as an elastic continuum and is modeled using the finite element method. The effect of SSI on response of the structure is evaluated for twenty far-field and twenty near-fault earthquake ground motions. The effect of friction coefficient of sliding material of FPS on SSI is also studied. The results of the study show that the seismic response of the structure increases for majority of the earthquake ground motions due to SSI. The sliding displacement and base shear are underestimated if SSI effects are ignored in the seismic analysis of structures isolated with FPS.

Seismic response Analysis of Building Structures considering the Nonlinear Property of Viscoelastic Dampers (점탄성 댐퍼의 비선형 특성을 고려한 건물의 지진응답해석)

  • Choi, Hyun;Kim, Doo-Hun;Min, Kyung-Won;Lee, Sang-Jo
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1999.10a
    • /
    • pp.228-235
    • /
    • 1999
  • As a seismic damper the viscoelastic damper is known the effective method to control the drift of the flexible building. As the viscoelastic damper has the characteristics of both damping and stiffness specially when the rubber material used hysteretic damping. The behavior of the hysteretic damping is quite different from that of the viscous damping. For the evaluation of the viscoelastic damper for the seismic purpose the nonlinear response spectrum was generated based on the dynamic test of the viscoelastic damper and the results is compared to that of the typical linear response spectrum,

  • PDF

Seismic Analysis of Cable-Supported Bridges (케이블 지지교량의 내진해석)

  • 서영국;정운용;조준상
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 1999.10a
    • /
    • pp.233-240
    • /
    • 1999
  • A general procedure is presented here to develope seismic design and analysis method for cable-supported bridges like suspension bridges subjected to ground motion. For representing a numerical model of suspension bridges. a new approach which satisfy design conditions for the initial equilibrium state of suspension bridges. without any nonlinear iterations. is proposed. The dynamic behavior of that model is verified by free vibration analysis. This study uses the response spectrum analysis to determine the Peak response of a suspension bridge to earthquake-induced ground motion. The SRSS(Square Root of Sum of Square). modal combination rule, is adopted for each direction, longitudinal and transverse. To illustrate the potential applicability for the seismic design of suspension bridges, a numerical example is presented in which the dynamic response of the Nam-hae suspension bridge subjected to earthquake

  • PDF

Soil-structure interaction effects on the seismic response of multistory frame structure

  • Botic, Amina;Hadzalic, Emina;Balic, Anis
    • Coupled systems mechanics
    • /
    • v.11 no.5
    • /
    • pp.373-387
    • /
    • 2022
  • In this paper,soil-structure interaction effects on the seismic response of multistory frame structure on raft foundation are numerically analyzed. The foundation soil profile is assumed to consists of a clay layer of variable thicknessresting on bedrock. Amodified plane-strain numerical model isformed in the software Plaxis, and both free vibration analysis, and earthquake analysis for a selected ground motion accelerogram are performed. The behavior of the structure is assumed to be linear elastic with Rayleigh viscous damping included. The behavior of the clay layer is modeled with a Hardening soil model with small strain stiffness. The computed results in terms of fundamental period and structural horizontal displacementsfor the case of fixed base and for different thicknesses of clay layer are presented, compared, and discussed.