• 제목/요약/키워드: seismic design codes

검색결과 306건 처리시간 0.023초

Seismic performance of moment connections in steel moment frames with HSS columns

  • Nunez, Eduardo;Torres, Ronald;Herrera, Ricardo
    • Steel and Composite Structures
    • /
    • 제25권3호
    • /
    • pp.271-286
    • /
    • 2017
  • The use of Hollow Structural Sections (HSS) provides an alternative for steel buildings in seismic zones, with the advantage over WF columns that the HSS columns have similar resistance along both axes and enhanced performance under flexure, compression and torsion with respect to other columns sections. The HSS columns have shown satisfactory performance under seismic loads, such as observed in buildings with steel moment frames in the Honshu earthquake (2011). The purpose of this research is to propose a new moment connection, EP-HSS ("End-plate to Hollow Structural Section"), using a wide flange beam and HSS column where the end plate falls outside the range of prequalification established in the ANSI/AISC 358-10 Specification, as an alternative to the traditional configuration of steel moment frames established in current codes. The connection was researched through analytical, numerical (FEM), and experimental studies. The results showed that the EP-HSS allowed the development of inelastic action on the beam only, avoiding stress concentrations in the column and developing significant energy dissipation. The experiments followed the qualification protocols established in the ANSI/AISC 341-10 Specification satisfying the required performance for highly ductile connections in seismic zones, thereby ensuring satisfactory performance under seismic actions without brittle failure mechanisms.

Influence of infill panels on an irregular RC building designed according to seismic codes

  • Ercolino, Marianna;Ricci, Paolo;Magliulo, Gennaro;Verderame, Gerardo M.
    • Earthquakes and Structures
    • /
    • 제10권2호
    • /
    • pp.261-291
    • /
    • 2016
  • This paper deals with the seismic assessment of a real RC frame building located in Italy, designed according to the current Italian seismic code. The first part of the paper deals with the calibration of the structural model of the investigated building. The results of an in-situ dynamic identification test are employed in a sensitivity and parametric study in order to find the best fit model in terms of frequencies and modal shapes. In the second part, the safety of the structure is evaluated by means of nonlinear static analyses, taking into account the results of the previous dynamic study. In order to investigate the influence of the infills on the seismic response of the structure, the nonlinear static analyses are performed both neglecting and taking into account the infill panels. The infill panels differently change the behavior of the structure in terms of strength and stiffness at different seismic intensity levels. The assessment study also verifies the absence of brittle failures in structural elements, which could be caused by either the local interaction with infills or the failure of the strength hierarchy.

Seismic induced damageability evaluation of steel buildings: a Fuzzy-TOPSIS method

  • Shahriar, Anjuman;Modirzadeh, Mehdi;Sadiq, Rehan;Tesfamariam, Solomon
    • Earthquakes and Structures
    • /
    • 제3권5호
    • /
    • pp.695-717
    • /
    • 2012
  • Seismic resiliency of new buildings has improved over the years due to better seismic codes and design practices. However, there is still large number of vulnerable and seismically deficient buildings. It is not economically feasible to retrofit and upgrade all vulnerable buildings, thus there is a need for rapid screening tool. Many factors contribute to the damageability of buildings; this makes seismic evaluation a complex multi-criteria decision making problem. Many of these factors are noncommensurable and involve subjectivity in evaluation that highlights the use of fuzzy-based method. In this paper, a risk-based framework earlier proposed by Tesfamariam and Saatcioglu (2008a) is extended using Fuzzy-TOPSIS method and applied to develop an evaluation and ranking scheme for steel buildings. The ranking is based on damageability that can help decision makers interpret the results and take appropriate decision actions. Finally, the application of conceptual model is demonstrated through a case study of 1994 Northridge earthquake data on seismic damage of steel buildings.

원통형 액체저장 강탱크의 내진설계기준 (Earthquake Resistant Design Critieria for Cylindrical Liquid-Storage Steel tanks)

  • 국승규;이진호
    • 한국지진공학회논문집
    • /
    • 제3권2호
    • /
    • pp.19-28
    • /
    • 1999
  • 건물과 교량의 내진설계기준 제정작업이 활발하게 진행되고 있는 반면 탱크구조물에 대한 내진설계기준 제정작업은 아직 초기단계에 머무르고 있는 실정이다 탱크구조물이 지진에 의해 붕괴되는 경우 탱크자체의 파손 및 저장물의 손실에 의한 직접피해보다 저장물의 유출에 의한 피해파급이 더욱 심각한 상황을 초래할 수 있다 따라서 탱크구조물의 내진설계기준에는 탱크구조물의 동적 거동에 대한 해석 및 검토방법은 물론 이러한 피해파급을 최소할 수 잇는 조치가 포함되어야 한다 이논문에서는 원통형 액체저장 강탱크에 대한 내진설계기준의 제정에 필수적으로 고려해야 하는 설계개념과 원칙 해석방법 검토사항 및 피해파급 차단초치를 제시하였다.

  • PDF

Monotonic and cyclic flexural tests on lightweight aggregate concrete beams

  • Badogiannis, E.G.;Kotsovos, M.D.
    • Earthquakes and Structures
    • /
    • 제6권3호
    • /
    • pp.317-334
    • /
    • 2014
  • The work is concerned with an investigation of the advantages stemming from the use of lightweight aggregate concrete in earthquake-resistant reinforced concrete construction. As the aseismic clauses of current codes make no reference to lightweight aggregate concrete beams made of lightweight aggregate concrete but designed in accordance with the code specifications for normal weight aggregate concrete, together with beams made from the latter material, are tested under load mimicking seismic action. The results obtained show that beam behaviour is essentially independent of the design method adopted, with the use of lightweight aggregate concrete being found to slightly improve the post-peak structural behaviour. When considering the significant reduction in deadweight resulting from the use of lightweight aggregate concrete, the results demonstrate that the use of this material will lead to significant savings without compromising the structural performance requirements of current codes.

Seismic collapse risk of RC frames with irregular distributed masonry infills

  • Li, Yan-Wen;Yam, Michael C.H.;Cao, Ke
    • Structural Engineering and Mechanics
    • /
    • 제76권3호
    • /
    • pp.421-433
    • /
    • 2020
  • Masonry infills are normally considered as non-structural elements in design practice, therefore, the interaction between the bounding frame and the strength contribution of masonry infills is commonly ignored in the seismic analysis work of the RC frames. However, a number of typical RC frames with irregular distributed masonry infills have suffered from undesirable weak-story failure in major earthquakes, which indicates that ignoring the influence of masonry infills may cause great seismic collapse risk of RC frames. This paper presented the investigation on the risk of seismic collapse of RC frames with irregularly distributed masonry infills through a large number of nonlinear time history analyses (NTHAs). Based on the results of NTHAs, seismic fragility curves were developed for RC frames with various distribution patterns of masonry infills. It was found that the existence of masonry infills generally reduces the collapse risk of the RC frames under both frequent happened and very strong earthquakes, however, the severe irregular distribution of masonry infills, such as open ground story scenario, results in great risk of forming a weak story failure. The strong-column weak-beam (SCWB) ratio has been widely adopted in major seismic design codes to control the potential of weak story failures, where a SCWB ratio value about 1.2 is generally accepted as the lower limit. In this study, the effect of SCWB ratio on inter-story drift distribution was also parametrically investigated. It showed that improving the SCWB ratio of the RC frames with irregularly distributed masonry infills can reduce inter-story drift concentration index under earthquakes, therefore, prevent weak story failures. To achieve the same drift concentration index limit of the bare RC frame with SCWB ratio of about 1.2, which is specified in ACI318-14, the SCWB ratio of masonry-infilled RC frames should be no less than 1.5. For the open ground story scenario, this value can be as high as 1.8.

An investigation on the maximum earthquake input energy for elastic SDOF systems

  • Merter, Onur
    • Earthquakes and Structures
    • /
    • 제16권4호
    • /
    • pp.487-499
    • /
    • 2019
  • Energy-based seismic design of structures has gradually become prominent in today's structural engineering investigations because of being more rational and reliable when it is compared to traditional force-based and displacement-based methods. Energy-based approaches have widely taken place in many previous studies and investigations and undoubtedly, they are going to play more important role in future seismic design codes, too. This paper aims to compute the maximum earthquake energy input to elastic single-degree-of-freedom (SDOF) systems for selected real ground motion records. A data set containing 100 real ground motion records which have the same site soil profiles has been selected from Pacific Earthquake Research (PEER) database. Response time history (RTH) analyses have been conducted for elastic SDOF systems having a constant damping ratio and natural periods of 0.1 s to 3.0 s. Totally 3000 RTH analyses have been performed and the maximum mass normalized earthquake input energy values for all records have been computed. Previous researchers' approaches have been compared to the results of RTH analyses and an approach which considers the pseudo-spectral velocity with Arias Intensity has been proposed. Graphs of the maximum earthquake input energy versus the maximum pseudo-spectral velocity have been obtained. The results show that there is a good agreement between the maximum input energy demands of RTH analysis and the other approaches and the maximum earthquake input energy is a relatively stable response parameter to be used for further seismic design and evaluations.

Behaviour factor and displacement estimation of low-ductility precast wall system under seismic actions

  • Tiong, Patrick L.Y.;Adnan, Azlan;Hamid, Nor H.A.
    • Earthquakes and Structures
    • /
    • 제5권6호
    • /
    • pp.625-655
    • /
    • 2013
  • This paper investigated the seismic behaviour of an innovated non-ductile precast concrete wall structural system; namely HC Precast System (HCPS). The system comprises load-bearing precast wall panels merely connected only to column at both ends. Such study is needed because there is limited research information available in design codes for such structure particularly in regions having low to moderate seismicity threats. Experimentally calibrated numerical model of the wall system was used to carry out nonlinear pushover analyses with various types of lateral loading patterns. Effects of laterally applied single point load (SPL), uniformly distributed load (UDL), modal distributed load (MDL) and triangular distributed load (TDL) onto global behaviour of HCPS were identified. Discussion was focused on structural performance such as ductility, deformability, and effective stiffness of the wall system. Thus, a new method for engineers to estimate the nonlinear deformation of HCPS through linear analysis was proposed.

Reinforced concrete core-walls connected by a bridge with buckling restrained braces subjected to seismic loads

  • Beiraghi, Hamid
    • Earthquakes and Structures
    • /
    • 제15권2호
    • /
    • pp.203-214
    • /
    • 2018
  • Deflection control in tall buildings is a challenging issue. Connecting of the towers is an interesting idea for architects as well as structural engineers. In this paper, two reinforced concrete core-wall towers are connected by a truss bridge with buckling restrained braces. The buildings are 40 and 60-story. The effect of the location of the bridge is investigated. Response spectrum analysis of the linear models is used to obtain the design demands and the systems are designed according to the reliable codes. Then, nonlinear time history analysis at maximum considered earthquake is performed to assess the seismic responses of the systems subjected to far-field and near-field record sets. Fiber elements are used for the reinforced concrete walls. On average, the inter-story drift ratio demand will be minimized when the bridge is approximately located at a height equal to 0.825 times the total height of the building. Besides, because of whipping effects, maximum roof acceleration demand is approximately two times the peak ground acceleration. Plasticity extends near the base and also in major areas of the walls subjected to the seismic loads.

파괴메카니즘을 고려한 일반도로교의 지진해석모델 (Seismic Analysis Models for Typical Roadway Bridges considering failure Mechanisms)

  • 국승규;김판배
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 2001년도 추계 학술발표회 논문집 Proceedings of EESK Conference-Fall 2001
    • /
    • pp.295-301
    • /
    • 2001
  • For the seismic analysis of typical roadway bridges provisions are given in most codes for analysis models, which describes however only fundamental modelling methods according to the basic theories of structural dynamics. In practice even conventional non-seismic analysis models, separate super- and substructure models, are applied, which are not adequate because of neglecting connection elements. In this study three typical roadway bridges, a Steel box bridge, a PC beam bridge and a PC box bridge are selected and simple models integrating super- and substructure as well as connection elements are given. The simple models are composed with frame elements with lumped masses representing stiffness and mass characteristics of the selected bridges. To check the properness of the simple models, analysis results with the simple models are compared with those obtained with detailed models in view of bridge failure mechanisms. It is proved that the simple models can be used in the preliminary design phase fur the determination of failure mechanisms of typical roadway bridges.

  • PDF