• Title/Summary/Keyword: seismic data

Search Result 1,407, Processing Time 0.031 seconds

Sequence Stratigraphy of Late Quaternary Deposits in the Southeastern Continental Shelf, Korea (한국 남동 대륙붕 후 제4기 퇴적층의 시퀀스 층서)

  • 유동근;이치원;최진용;박수철;최진혁
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.369-379
    • /
    • 2003
  • Analysis of high-resolution seismic profiles and sediment data from the southeastern continental shelf of Korea reveals that the late Quaternary deposits consist of a set of lowstand (LST), transgressive (TST), and highstand systems tracts (HST) that corresponds to the sea-level change after the Last Glacial Maximum. LST (Unit I) above the sequence boundary consists of sandy mud or muddy sand deposited during the last glacial period and is confined to the shelf margin and trough region. TST (Unit II) between transgressive surface and maximum flooding surface consists of sandy sediments deposited during the postglacial transgression (15,000-6,000 yr BP). Although TST is widely distributed on the shelf, it is much thinner than LST and HST. On the basis of distribution pattern, TST can be divided into three sub-units: early TST (Unit IIa) on the shelf margin, middle TST (Unit IIb) on the mid-shelf, and late TST (Unit IIc) on the inner shelf, respectively. These are characterized by a backstepping depositional arrangement. HST(Unit III) above the maximum flooding surface is composed of the fine-grained sediments deposited during the last 6000 yrs when sea level was close to the present level and its distribution is restricted to the inner shelf along the coast.

Two-Dimensional Filtering Through the Radon Transform (라돈변환을 이용한 2차원 필터링)

  • 원중선
    • Korean Journal of Remote Sensing
    • /
    • v.14 no.1
    • /
    • pp.17-36
    • /
    • 1998
  • The Radon transform has been widely used in various techniques of digital image processing such as the computerized topography, lineament analysis in a remotely sensed image, slant-stack processing of seismic data, and so on. Compared to the Fourier transform, the utility of two-dimensional convolutional or correlational properties of the Radon transform, however, has been underestimated. We show that the two-dimensional convolution and correlation is respectively reduced to be one-dimensional convolution and correlation with respect to ρ in the Radon space. Therefore, one can achieve a two dimensional filtering by applying a simple one-dimensional convolution in the Radon space followed by an inverse Radon transform. Tests of the approach using FIR filters are carried out specifically for enhancing the ship wake in a RADARSAT SAR image. The test results demonstrate that the two-dimensional filtering through the Radon transform effectively enhance the ship wake features as well as reducing sea speckle in the image. Although two-dimensional convolution and correlation through the Radon transform are not so much useful as those through the courier transform in views of efficiency and effectiveness, it can be utilized to improve the quality of a digitally processed output when the process should be accompanied by the Radon transform such as topography and lineament analysis of SAR image.

Validation on the Bodywave Magnitude Estimation of the 2017 DPRK's Nuclear Test by Source Scaling (지진원 상대비율 측정법을 이용한 2017년 북한 핵실험의 실체파 규모 검증)

  • Kim, Tae Sung
    • Economic and Environmental Geology
    • /
    • v.51 no.6
    • /
    • pp.589-593
    • /
    • 2018
  • Democratic Peoples' Republic of Korea (DPRK) conducted the $6^{th}$ underground nuclear test at the Punggye-ri underground nuclear test site on September 27, 2017 12 hours 30 minutes of Korean local time. Comprehensive Nuclear-Test Ban Treaty Organization (CTBTO) under U.N. announced the body wave magnitude of the event was mb 6.1 while U.S. Geological Survey (USGS)'s calculation was mb 6.3. In this study, the differences of the magnitude estimates were investigated and verified. For this purpose, a source scaling between the $5^{th}$ and $6^{th}$ event, which's epicenters are 200 meters apart, was performed using seismic data sets from 30 broadband stations. The relative amplitude variations of the $6^{th}$ event compared to the $5^{th}$ event in the frequency domain was analyzed through the scaling. The increased amount of the bodywave magnitude $m_b$ for the $6^{th}$ event was calculated at 1 Hz, which was compared to those from USGS and CTBTO's calculations.

Inspection Method Validation of Grouting Effect on an Agricultural Reservoir Dam (농업용 저수지 제체에서의 그라우팅 주입효과 확인방법의 검증)

  • Kim, Hyeong-Sin;Moon, Seong-Woo;Leem, Kookmook;Seo, Yong-Seok
    • The Journal of Engineering Geology
    • /
    • v.31 no.3
    • /
    • pp.381-393
    • /
    • 2021
  • Physical, mechanical, hydraulic, and geophysical tests were applied to validate methods of inspecting the effectiveness of grouting on an agricultural reservoir dam. Data obtained from series of in situ and laboratory tests considered four stages: before grouting; during grouting; immediately after grouting; and after aging the grouting for 28 days. The results of SPT and triaxial tests, including the unit weight, compressive strength, friction angle, cohesion, and N-value, indicated the extent of ground improvement with respect to grout injection. However, they sometimes contained errors caused by ground heterogeneity. Hydraulic conductivity obtained from in situ variable head permeability testing is most suitable for identifying the effectiveness of grouting because the impermeability of the ground increased immediately after grouting. Electric resistivity surveying is useful for finding a saturated zone and a seepage pathway, and multichannel analysis of surface waves (MASW) is suitable for analyzing the effectiveness of grouting, as elastic velocity increases distinctly after grouting injection. MASW also allows calculation from the P- and S- wave velocities of dynamic properties (e.g., dynamic elastic modulus and dynamic Poisson's ratio), which can be used in the seismic design of dam structures.

Eruptive History of the Ulleungdo-Dokdo Volcanic Group, the East Sea: a Multi-Scale Approach (동해 울릉도-독도 화산그룹 분화사 다중스케일 연구)

  • Kim, Gi-Bom;Lee, Jae-Hyuk;Ahn, Ho-Jun;Je, Yoon-Hee
    • Journal of the Korean earth science society
    • /
    • v.43 no.1
    • /
    • pp.140-150
    • /
    • 2022
  • This paper focuses on introducing the concept of the multi-scale study on the Ulleungdo-Dokdo Volcanic Group in the East Sea and recent new findings from it. Multi-channel seismic reflection data reveals that the major volcanic activities of the Ulleungdo-Dokdo Volcanic Group took place between 5 and 2.5 Ma, which were propagated from Isabu Tablemount on the eastern end to the Ulleung Island on the western end. The terrestrial Ulleung Island was built via 5 stages, which eventually formed a 3 km-wide caldera, named Nari Caldera, and a volcanic dome, named Albong, within the caldera. The Albong and the unit N-1, the earliest phreatomagmatic explosive phase of the Albong volcano, were generated from a new magma injected into the existing phonolitic body. The generally trachyandesitic bulk rock composition of the pumice in unit N-1 and Albong is attributed to the contamination of the new magma by mafic cumulates at the base of the existing phonolitic chamber. The lines of evidence of a new magma injection point toward that Ulleung Island is an active volcano with a live subvolcanic magma plumbing system.

The Effect of Ground Heterogeneity on the GPR Signal: Numerical Analysis (지반의 불균질성이 GPR탐사 신호에 미치는 영향에 대한 수치해석적 분석)

  • Lee, Sangyun;Song, Ki-il;Ryu, Heehwan;Kang, Kyungnam
    • Journal of the Korean GEO-environmental Society
    • /
    • v.23 no.8
    • /
    • pp.29-36
    • /
    • 2022
  • The importance of subsurface information is becoming crucial in urban area due to increase of underground construction. The position of underground facilities should be identified precisely before excavation work. Geophyiscal exporation method such as ground penetration radar (GPR) can be useful to investigate the subsurface facilities. GPR transmits electromagnetic waves to the ground and analyzes the reflected signals to determine the location and depth of subsurface facilities. Unfortunately, the readability of GPR signal is not favorable. To overcome this deficiency and automate the GPR signal processing, deep learning technique has been introduced recently. The accuracy of deep learning model can be improved with abundant training data. The ground is inherently heteorogeneous and the spacially variable ground properties can affact on the GPR signal. However, the effect of ground heterogeneity on the GPR signal has yet to be fully investigated. In this study, ground heterogeneity is simulated based on the fractal theory and GPR simulation is carried out by using gprMax. It is found that as the fractal dimension increases exceed 2.0, the error of fitting parameter reduces significantly. And the range of water content should be less than 0.14 to secure the validity of analysis.

A Study on Evaluating Damage to Railway Embankment Caused by Liquefaction Using Dynamic Numerical Analysis (동적수치해석을 이용한 액상화로 인한 철도제방 피해도 평가법 개발 연구)

  • Ha, Ik-Soo
    • Journal of the Korean Geotechnical Society
    • /
    • v.38 no.11
    • /
    • pp.149-161
    • /
    • 2022
  • This study selected the indexes for evaluating the damage of the railway embankments due to liquefaction from the earthquake damage cases of railway embankments. The study correlated the selected indexes and the settlement of the embankment crest from the dynamic numerical analysis. Further, the correlation was used to develop a method for evaluating the liquefaction damage to the railway embankment. The damage cases and damage types were analyzed, and referring to the liquefaction damage assessment method for other structures, the embankment height (H), the non-liquefiable layer thickness (H1), and the liquefaction potential index were selected as indexes for evaluating the damage. The study performed dynamic effective stress analyses on the railway embankment, and the PM4-Sand model was applied as the constitutive liquefaction model for the embankment foundation ground. The model's validity was first verified by comparing it with the existing dynamic centrifugal model test results performed on the railway embankment. Nine sites where the foundation ground can be liquefied were selected from the data of 549 embankments of the Honam High-speed Railway in Korea. Further, dynamic numerical analyses using four seismic waves as input earthquake load were performed for the selected site sections. The numerical analysis results confirmed the correlation between the evaluation indexes and the embankment crest settlement. A method for efficiently evaluating the damage to the embankment due to liquefaction was proposed using the chart obtained from this correlation.

A Case Study on the Cause Analysis of Land creep Using Geophysical Exploration (물리탐사를 활용한 땅밀림 원인분석의 사례적 연구)

  • Jae Hyeon Park;Gyeong Mi Tak;Kook Mook Leem
    • Journal of Korean Society of Forest Science
    • /
    • v.112 no.3
    • /
    • pp.382-392
    • /
    • 2023
  • Recent reports have indicated a rapid increase in the frequency of sediment disasters due to climate change and other changes in the geological environment. Given this alarming situation and the recent increase in the frequency of land creep in Korea, systematic and efficient recovery and management of land creep areas is essential. The purpose of this study is to identify disaster vulnerability by conducting a physical exploration of land creep in San 4-1, Jayeon-ri, Gaegun-myeon, Yangpyeong-gun, Gyeonggi-do, and examine stability by identifying the overall geological structure of the affected ground. In addition, drilling surveys are conducted to verify the reliability of the measured data. The results of the study reveal that low specific resistance abnormalities are distributed in the upper part of the soil layer and weathering zone and that this section is a 50-120 m exploration line. It is also confirmed to be a low-hardness ground area where tensile cracks are observed. Therefore, there is a need for research focused on developing measures to reduce economic and social damage within the domestic context by continuously monitoring indicators of land creep and identifying land creep risks.

A Study on Robust Optimal Sensor Placement for Real-time Monitoring of Containment Buildings in Nuclear Power Plants (원전 격납 건물의 실시간 모니터링을 위한 강건한 최적 센서배치 연구)

  • Chanwoo Lee;Youjin Kim;Hyung-jo Jung
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.36 no.3
    • /
    • pp.155-163
    • /
    • 2023
  • Real-time monitoring technology is critical for ensuring the safety and reliability of nuclear power plant structures. However, the current seismic monitoring system has limited system identification capabilities such as modal parameter estimation. To obtain global behavior data and dynamic characteristics, multiple sensors must be optimally placed. Although several studies on optimal sensor placement have been conducted, they have primarily focused on civil and mechanical structures. Nuclear power plant structures require robust signals, even at low signal-to-noise ratios, and the robustness of each mode must be assessed separately. This is because the mode contributions of nuclear power plant containment buildings are concentrated in low-order modes. Therefore, this study proposes an optimal sensor placement methodology that can evaluate robustness against noise and the effects of each mode. Indicators, such as auto modal assurance criterion (MAC), cross MAC, and mode shape distribution by node were analyzed, and the suitability of the methodology was verified through numerical analysis.

Velocity-effective stress response of $CO_2$-saturated sandstones ($CO_2$로 포화된 사암의 속도-유효응력 반응)

  • Siggins, Anthony F.
    • Geophysics and Geophysical Exploration
    • /
    • v.9 no.1
    • /
    • pp.60-66
    • /
    • 2006
  • Three differing sandstones, two synthetic and one field sample, have been tested ultrasonically under a range of confining pressures and pore pressures representative of in-situ reservoir pressures. These sandstones include: a synthetic sandstone with calcite intergranular cement produced using the CSIRO Calcite In-situ Precipitation Process (CIPS); a synthetic sandstone with silica intergranular cement; and a core sample from the Otway Basin Waarre Formation, Boggy Creek 1 well, from the target lithology for a trial $CO_2$ pilot project. Initial testing was carried on the cores at "room-dried" conditions, with confining pressures up to 65 MPa in steps of 5 MPa. All cores were then flooded with $CO_2$, initially in the gas phase at 6 MPa, $22^{\circ}C$, then with liquid-phase $CO_2$ at a temperature of $22^{\circ}C$ and pressures from 7 MPa to 17 MPa in steps of 5 MPa. Confining pressures varied from 10 MPa to 65 MPa. Ultrasonic waveforms for both P- and S-waves were recorded at each effective pressure increment. Velocity versus effective pressure responses were calculated from the experimental data for both P- and S-waves. Attenuations $(1/Q_p)$ were calculated from the waveform data using spectral ratio methods. Theoretical calculations of velocity as a function of effective pressure for each sandstone were made using the $CO_2$ pressure-density and $CO_2$ bulk modulus-pressure phase diagrams and Gassmann effective medium theory. Flooding the cores with gaseous phase $CO_2$ produced negligible change in velocity-effective stress relationships compared to the dry state (air saturated). Flooding with liquid-phase $CO_2$ at various pore pressures lowered velocities by approximately 8% on average compared to the air-saturated state. Attenuations increased with liquid-phase $CO_2$ flooding compared to the air-saturated case. Experimental data agreed with the Gassmann calculations at high effective pressures. The "critical" effective pressure, at which agreement with theory occurred, varied with sandstone type. Discrepancies are thought to be due to differing micro-crack populations in the microstructure of each sandstone type. The agreement with theory at high effective pressures is significant and gives some confidence in predicting seismic behaviour under field conditions when $CO_2$ is injected.