• 제목/요약/키워드: seismic damage assessment

검색결과 277건 처리시간 0.024초

기존 고속철도 터널의 지진취약도 함수 개발에 관한 연구 (A Study on the Development of the Seismic Fragility Functions of the High Speed Railway Tunnels in use)

  • 김홍균;신철식;이태형;이종건;박두희
    • 한국지반환경공학회 논문집
    • /
    • 제15권11호
    • /
    • pp.67-75
    • /
    • 2014
  • 본 연구에서는 공용 중인 91개 고속철도 터널을 대상으로 단계별 내진성능평가를 실시하여 설계기준에서 제시하는 목표 내진성능 확보여부를 검토하였다. 또한 지진취약도 함수도 함께 개발하여 지진규모에 따른 시설물의 확률론적 피해예측이 가능하도록 하였다. 단계별 내진성능평가는 내진성능 예비평가 및 상세평가 순으로 실시하였으며, 평가결과 대상터널들은 설계기준 수준의 내진성능을 확보하는 것으로 분석되었다. 지진취약도 함수는 최대지반가속도(Peak Ground Acceleration, PGA)를 기준으로 한 대수 정규분포형태로 설정하였으며, 함수도출방법은 설계 PGA수준에 대한 손상발생확률을 이용하여 취약도함수의 모수를 결정하는 방식으로 하였다. 손상발생 검토부재는 라이닝콘크리트로서, 대상터널을 굴착식 터널(NATM 터널) 및 개착식 터널로 구분하여 각각에 대한 손상수준별 지진취약도 함수를 개발하였다. 이번연구에서 도출된 지진취약도 함수와 기존연구결과(FEMA, 2004)와의 비교 분석을 통하여 대상터널의 내진성능확보수준을 평가하였으며, 그 결과 대상터널이 기존연구의 대상인 재래식 터널(American Steel Support Method, ASSM)에 비하여 상대적으로 내진성능이 우수한 것으로 분석되었다.

Dynamic assessment of the seismic isolation influence for various aircraft impact loads on the CPR1000 containment

  • Mei, Runyu;Li, Jianbo;Lin, Gao;Zhu, Xiuyun
    • Nuclear Engineering and Technology
    • /
    • 제50권8호
    • /
    • pp.1387-1401
    • /
    • 2018
  • An aircraft impact (AI) on a nuclear power plant (NPP) is considered to be a beyond-design-basis event that draws considerable attention in the nuclear field. As some NPPs have already adopted the seismic isolation technology, and there are relevant standards to guide the application of this technology in future NPPs, a new challenge is that nuclear power engineers have to determine a reasonable method for performing AI analysis of base-isolated NPPs. Hence, dynamic influences of the seismic isolation on the vibration and structural damage characteristics of the base-isolated CPR1000 containment are studied under various aircraft loads. Unlike the seismic case, the impact energy of AI is directly impacting on the superstructure. Under the coupled influence of the seismic isolation and the various AI load, the flexible isolation layer weakens the constraint function of the foundation on the superstructure, the results show that the seismic isolation bearings will produce a large horizontal deformation if the AI load is large enough, the acceleration response at the base-mat will also be significantly affected by the different horizontal stiffness of the isolation bearing. These concerns require consideration during the design of the seismic isolation system.

Application of structural health monitoring in civil infrastructure

  • Feng, M.Q.
    • Smart Structures and Systems
    • /
    • 제5권4호
    • /
    • pp.469-482
    • /
    • 2009
  • The emerging sensor-based structural health monitoring (SHM) technology has a potential for cost-effective maintenance of aging civil infrastructure systems. The author proposes to integrate continuous and global monitoring using on-structure sensors with targeted local non-destructive evaluation (NDE). Significant technical challenges arise, however, from the lack of cost-effective sensors for monitoring spatially large structures, as well as reliable methods for interpreting sensor data into structural health conditions. This paper reviews recent efforts and advances made in addressing these challenges, with example sensor hardware and health monitoring software developed in the author's research center. The hardware includes a novel fiber optic accelerometer, a vision-based displacement sensor, a distributed strain sensor, and a microwave imaging NDE device. The health monitoring software includes a number of system identification methods such as the neural networks, extended Kalman filter, and nonlinear damping identificaiton based on structural dynamic response measurement. These methods have been experimentally validated through seismic shaking table tests of a realistic bridge model and tested in a number of instrumented bridges and buildings.

서울시 모델 구역에서의 지진피해시나리오 연구 (A Study on the Seismic Damage Scenario in the Model District of Seoul City)

  • 김재관
    • 한국지진공학회:학술대회논문집
    • /
    • 한국지진공학회 1999년도 춘계 학술발표회 논문집 Proceedings of EESK Conference-Spring
    • /
    • pp.223-230
    • /
    • 1999
  • The seismic damage assessment to the postulated earthquake is attempted for the buildings in the model district of Seoul City. The capacity spectrum method is employed in which the vulnerability functions are expressed as functions of the spectral displacement. the database of the building stock is constructed and managed using Geographic Information System software. The model district is selected to represent the typical structural and residential characteristics of Seoul City The structural properties were collected from the design documents. The field inspections were carried out to find out the current status of the building. They are classified into 11 structural types. The fragility curves in HazUS are employed, The ground motions from the postulated earthquakes are simulated using the Boor's methods, The surface soil in the district is classified into 3 profiles using the depth as the parameter. The one-dimensional wave propagation method is used to calculate he filtered ground motion through surface soil layer. The average spectrum of this sample time histories is used as the demand curves. The calculated results are expressed in maps using GIS software ArcView 3.0a

  • PDF

Seismic failure analysis and safety assessment of an extremely long-span transmission tower-line system

  • Tian, Li;Pan, Haiyang;Ma, Ruisheng;Dong, Xu
    • Structural Engineering and Mechanics
    • /
    • 제71권3호
    • /
    • pp.305-315
    • /
    • 2019
  • Extremely long-span transmission tower-line system is an indispensable portion of an electricity transmission system, and its failures or collapse can impact on the entire electricity grid, affect the modern life, and cause great economic losses. It is therefore imperative to investigate the failure and safety of the transmission tower subjected to ground motions. In the present study, a detailed finite element (FE) model of a representative extremely long-span transmission tower-line system is established. A segmental damage indicator (SDI) is proposed to quantitatively assess the damage level of each segment of the transmission tower under earthquakes. Additionally, parametric studies are conducted to investigate the influence of different ground motions and incident angles on the ultimate capacity and weakest segment of the transmission tower. Finally, the collapse fragility curve in terms of the maximum SDI value and PGA is plotted for the exampled transmission tower. The results show that the proposed SDI can quantitatively assess the damage level of the segments, and thus determine the ultimate capacity and weakest segment of the transmission tower. Moreover, the different ground motions and incident angles have a significant influence on the SDI values of the transmission tower, and the collapse fragility curve is utilized to evaluate the collapse resistant capacity of the transmission tower subjected to ground motions.

Modelling beam-to-column joints in seismic analysis of RC frames

  • Lima, Carmine;Martinelli, Enzo;Macorini, Lorenzo;Izzuddin, Bassam A.
    • Earthquakes and Structures
    • /
    • 제12권1호
    • /
    • pp.119-133
    • /
    • 2017
  • Several theoretical and analytical formulations for the prediction of shear strength in reinforced concrete (RC) beam-to-column joints have been recently developed. Some of these predictive models are included in the most recent seismic codes and currently used in practical design. On the other hand, the influence of the stiffness and strength degradations in RC joints on the seismic performance of RC framed buildings has been only marginally studied, and it is generally neglected in practice-oriented seismic analysis. To investigate such influence, this paper proposes a numerical description for representing the cyclic response of RC exterior joints. This is then used in nonlinear numerical simulations of RC frames subjected to earthquake loading. According to the proposed strategy, RC joints are modelled using nonlinear rotational spring elements with strength and stiffness degradations and limited ductility under cyclic loading. The proposed joint model has been firstly calibrated against the results from experimental tests on 12 RC exterior joints. Subsequently, nonlinear static and dynamic analyses have been carried out on two-, three- and four-storey RC frames, which represent realistic existing structures designed according to old standards. The numerical results confirm that the global seismic response of the analysed RC frames is strongly affected by the hysteretic damage in the beam-to-column joints, which determines the failure mode of the frames. This highlights that neglecting the effects of joints damage may potentially lead to non-conservative seismic assessment of existing RC framed structures.

Seismic pounding effects on adjacent buildings in series with different alignment configurations

  • Abdel Raheem, Shehata E.;Fooly, Mohamed Y.M.;Abdel Shafy, Aly G.A.;Abbas, Yousef A.;Omar, Mohamed;Abdel Latif, Mohamed M.S.;Mahmoud, Sayed
    • Steel and Composite Structures
    • /
    • 제28권3호
    • /
    • pp.289-308
    • /
    • 2018
  • Numerous urban seismic vulnerability studies have recognized pounding as one of the main risks due to the restricted separation distance between neighboring structures. The pounding effects on the adjacent buildings could extend from slight non-structural to serious structural damage that could even head to a total collapse of buildings. Therefore, an assessment of the seismic pounding hazard to the adjacent buildings is superficial in future building code calibrations. Thus, this study targets are to draw useful recommendations and set up guidelines for potential pounding damage evaluation for code calibration through a numerical simulation approach for the evaluation of the pounding risks on adjacent buildings. A numerical simulation is formulated to estimate the seismic pounding effects on the seismic response demands of adjacent buildings for different design parameters that include: number of stories, separation distances; alignment configurations, and then compared with nominal model without pounding. Based on the obtained results, it has been concluded that the severity of the pounding effects depends on the dynamic characteristics of the adjacent buildings and the input excitation characteristics, and whether the building is exposed to one or two-sided impacts. Seismic pounding among adjacent buildings produces greater acceleration and shear force response demands at different story levels compared to the no pounding case response demands.

PSC-I 거더교의 지진취약도 평가를 위한 HAZUS 방법의 국내 적용성 연구 (Modified HAZUS Method for Seismic Fragility Assessment of Domestic PSC-I Girder Bridges)

  • 서형열;이진학;김두기;송종걸
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제14권2호
    • /
    • pp.161-170
    • /
    • 2010
  • 교량구조물의 지진재해평가기술을 개발하기 위해서는 전체 교량에 대한 분류체계별 표준교량을 선정한 후, 간편한 정식화 방법을 통해 지진취약도를 분석하고, 이로부터 교량의 근사적인 지진위험도를 평가하는 것이 현실적이라 할 수 있다. 본 연구에서는 HAZUS에서 사용 중인 간편하면서도 실용적인 방법을 미국과 국내의 내진설계수준 등을 고려하여 국내 PSC-I 거더교에 적용 가능하도록 '수정된 HAZUS 방법에 의한 한국형 지진취약도함수'를 개발하였다. 이를 위해 국내 표준교량 형식 중 하나인 PSC-I 거더교에 대해 수치해석적 방법을 적용하여 해석적 지진취약도함수를 구하고, 수정된 HAZUS 방법을 적용하여 지진취약도함수를 구한 후 그 결과를 비교 분석하였다. 수정된 HAZUS 방법에서의 주요 계수는 수치해석적 방법에 의한 지진취약도함수와 가장 유사한 경향을 보이도록 하는 계수를 선택하는 방법으로 결정하였으며, 강도감소계수의 경우 HAZUS에서 제시한 값의 70% 수준을 사용할 때 해석적 결과와 유사한 지진취약도 함수를 구할 수 있음을 알 수 있었다.

서울시 모델 구역 지진피해 추정 연구 (A Study on the Seismic Damage Estimation in the Model District of Seoul City)

  • 윤의택;류혁;강태섭;김재관;박창업
    • 한국지진공학회논문집
    • /
    • 제9권6호
    • /
    • pp.41-52
    • /
    • 2005
  • 서울시 모델 구역의 건축물을 대상으로 가상 시나리오 지진에 의한 피해를 추정하였다. 다양한 주거 및 구조 특성을 대표할 수 있고 지반 증폭 효과를 고려할 수 있는 지역을 모델 구역으로 선정하였다. 모델 구역 내 건축물은 구조 형식에 따라 11 종류로 분류하였으며 HAZUS에서 제시한 값을 사용하여 역량 곡선(capacity curve)과 취약도 곡선(fragility curve)을 생성하였다. 가상 시나리오 지진의 지반 운동은 인공 지진 운동 생성 방법을 사용하여 생성하였으며 모델 구역을 표토층 두께에 따라 3개의 구역으로 나누고 지반응답해석을 수행하였다. 건축물의 피해 확률은 역량 스펙트럼 방법과 취약도 곡선을 사용하여 계산하였다. 최종적으로 GIS 데이터베이스를 활용하여 모델 구역 내 건축물의 전반적 피해 정도를 추정하였다.

Seismic performance of the historical masonry clock tower and influence of the adjacent walls

  • Cakir, Ferit;Uysal, Habib
    • Earthquakes and Structures
    • /
    • 제7권2호
    • /
    • pp.217-231
    • /
    • 2014
  • Ancient masonry towers are regarded as among the most important historical heritage structures of the world. These slender structures typically have orthogonal and circular geometry in plane. These structural forms are commonly installed with adjacent structures. Because of their geometrical shapes and structural constraints, ancient masonry towers are more vulnerable to earthquake damage. The main goal of the paper is to investigate the seismic behavior of Erzurum Clock Tower under earthquake loading and to determine the contribution of the castle walls to the seismic performance of the tower. In this study, four three-dimensional finite element models of the Erzurum Clock Tower were developed and the seismic responses of the models were investigated. Time history analyses were performed using the earthquakes that took place in Turkey in 1983 near Erzurum and in 1992 near Erzincan. In the first model, the clock tower was modeled without the adjacent walls; in the second model, the clock tower was modeled with a castle wall on the south side; in the third model, the clock tower was modeled with a castle wall on the north side; and in the last model, the clock tower was modeled with two castle walls on both the north and south sides. Results of the analyses show that the adjacent walls do not allow lateral movements and the horizontal displacements decreases. It is concluded that the adjacent structures should be taken into consideration when modeling seismic performance in order to get accurate and realistic results.