• Title/Summary/Keyword: seismic damage analysis

Search Result 684, Processing Time 0.023 seconds

Seismic Performance Assessment of RC Bridge Columns using Inelastic Finite Element Analysis (비탄성 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Chung, Young-Soo;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.63-74
    • /
    • 2005
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using inelastic finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Seismic Performance Assessment of Reinforced Concrete Bridge Columns using Nonlinear Finite Element Analysis (비선형 유한요소해석을 이용한 철근콘크리트 교각의 내진성능평가)

  • Kim, Tae-Hoon;Shin, Hyun-Mock
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.10 no.3 s.49
    • /
    • pp.21-33
    • /
    • 2006
  • The purpose of this study is to assess the seismic performance of reinforced concrete bridge columns using nonlinear finite element analysis. The accuracy and objectivity of the assessment process may be enhanced by the use of sophisticated nonlinear finite element analysis program. A computer program, named RCAHEST (Reinforced Concrete Analysis in Higher Evaluation System Technology), for the analysis of reinforced concrete structures was used. Damage index aims to provide a means of quantifying numerically the damage in reinforced concrete bridge columns sustained under earthquake loading. The proposed numerical method for the seismic performance assessment of reinforced concrete bridge columns is verified by comparison with reliable experimental results.

Behavioral Performance Evaluation of the Moment-Resisting Frame Models Equipped with Seismic Damage Mitigation Systems (지진피해 저감 시스템을 설치한 모멘트 프레임의 거동성능 평가)

  • Joe, Yang Hee;Son, Hong Min;Hu, Jong Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.21 no.6
    • /
    • pp.311-322
    • /
    • 2017
  • In this study, the seismic performance of concrete-steel composite moment frame structures equipped with seismic retrofitting systems such as seismic reinforcement, base isolators, and bracing members, which are typical earthquake damage mitigation systems, is evaluated through nonlinear dynamic analyses. A total of five frame models were designed and each frame model was developed for numerical analyses. A total of 80 ground acceleration data were used to perform the nonlinear dynamic analysis to measure ground shear force and roof displacement, and to evaluate the behavioral performance of each frame model by measuring inter-story drift ratios. The analysis results indicate that the retrofitting device of the base isolator make a significant contribution to generating relatively larger absolute displacement than other devices due to flexibility provided to interface between ground and column base. However, the occurrence of the inter-story drift ratio, which is a relative displacement that can detect the damage of the structure, is relatively small compared with other models. On the other hand, the seismic reinforced frame model enhanced with the steel plate at the lower part of the column was found to be the least efficient.

Seismic reliability of precast concrete frame with masonry infill wall

  • Mahdi Adibi;Roozbeh Talebkhah;Hamid Farrokh Ghatte
    • Earthquakes and Structures
    • /
    • v.24 no.2
    • /
    • pp.141-153
    • /
    • 2023
  • The presented paper considers infill masonry walls' influence on the seismic reliability of precast concrete frames. The recent Bojnord earthquake on May 13th, 2017 in Iran (MW 5.4) illustrated that the infill masonry walls play a crucial role in the damage extent and life safety issues of inhabitants in the precast concrete buildings. The incremental dynamic analysis (IDA) approach was used to determine the fragility curves of the represented damaged precast frame. Then, by integrating site hazard and structural fragilities, the seismic reliability of the represented precast frame was evaluated in different damage limit states. Additionally, the static pushover analysis (SPA) approach was used to assess the seismic performance assessment of the precast frame. Bare and infilled frames were modeled as 2D frames employing the OpenSees software platform. The multi-strut macro-model method was employed for infill masonry simulation. Also, a relatively efficient and straightforward nonlinear model was used to simulate the nonlinear behavior of the precast beam-column joint. The outputs show that consideration of the masonry infilled wall effect in all spans of the structural frame leads to a decrease in the possibility of exceedance of specified damage limit states in the structures. In addition, variation of hazard curves for buildings with and without consideration of infilled walls leads to a decrease in the reliability of the building's frames with masonry infilled walls. Furthermore, the lack of infill walls in the first story significantly affects the precast concrete frame's seismic reliability and performance.

Damage index based seismic risk generalization for concrete gravity dams considering FFDI

  • Nahar, Tahmina T.;Rahman, Md M.;Kim, Dookie
    • Structural Engineering and Mechanics
    • /
    • v.78 no.1
    • /
    • pp.53-66
    • /
    • 2021
  • The determination of the damage index to reveal the performance level of a structure can constitute the seismic risk generalization approach based on the parametric analysis. This study implemented this concept to one kind of civil engineering structure that is the concrete gravity dam. Different cases of the structure exhibit their individual responses, which constitute different considerations. Therefore, this approach allows the parametric study of concrete as well as soil for evaluating the seismic nature in the generalized case. To ensure that the target algorithm applicable to most of the concrete gravity dams, a very simple procedure has been considered. In order to develop a correlated algorithm (by response surface methodology; RSM) between the ground motion and the structural property, randomized sampling was adopted through a stochastic method called half-fractional central composite design. The responses in the case of fluid-foundation-dam interaction (FFDI) make it more reliable by introducing the foundation as being bounded by infinite elements. To evaluate the seismic generalization of FFDI models, incremental dynamic analysis (IDA) was carried out under the impacts of various earthquake records, which have been selected from the Pacific Earthquake Engineering Research Center data. Here, the displacement-based damage indexed fragility curves have been generated to show the variation in the seismic pattern of the dam. The responses to the sensitivity analysis of the various parameters presented here are the most effective controlling factors for the concrete gravity dam. Finally, to establish the accuracy of the proposed approach, reliable verification was adopted in this study.

Proposal of Strength-Based Design Procedure for Improving the Seismic Performance of Steel Ordinary Moment Frames (철골 보통모멘트골조의 내진성능 향상을 위한 강도기반 설계 절차 제안)

  • Kim, Taeo;Han, Sang Whan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.28 no.1
    • /
    • pp.11-20
    • /
    • 2024
  • The ductility of the system based on the capacity of each structural member constituting the seismic force-resisting system is a significant factor determining the structure's seismic performance. This study aims to provide a procedure to supplement the current seismic design criteria to secure the system's ductility and improve the seismic performance of the steel ordinary moment frames. For the study, a nonlinear analysis was performed on the 9- and 15-story model buildings, and the formation of collapse mechanisms and damage distribution for dynamic loads were analyzed. As a result of analyzing the nonlinear response and damage distribution of the steel ordinary moment frame, local collapse due to the concentration of structural damage was observed in the case where the influence of the higher mode was dominant. In this study, a procedure to improve the seismic performance and avoid inferior dynamic response was proposed by limiting the strength ratio of the column. The proposed procedure effectively improved the seismic performance of steel ordinary moment frames by reducing the probability of local collapse.

Application of steel equivalent constitutive model for predicting seismic behavior of steel frame

  • Wang, Meng;Shi, Yongjiu;Wang, Yuanqing
    • Steel and Composite Structures
    • /
    • v.19 no.5
    • /
    • pp.1055-1075
    • /
    • 2015
  • In order to investigate the accuracy and applicability of steel equivalent constitutive model, the calculated results were compared with typical tests of steel frames under static and dynamic loading patterns firstly. Secondly, four widely used models for time history analysis of steel frames were compared to discuss the applicability and efficiency of different methods, including shell element model, multi-scale model, equivalent constitutive model (ECM) and traditional beam element model (especially bilinear model). Four-story steel frame models of above-mentioned finite element methods were established. The structural deformation, failure modes and the computational efficiency of different models were compared. Finally, the equivalent constitutive model was applied in seismic incremental dynamic analysis of a ten-floor steel frame and compared with the cyclic hardening model without considering damage and degradation. Meanwhile, the effects of damage and degradation on the seismic performance of steel frame were discussed in depth. The analysis results showed that: damages would lead to larger deformations. Therefore, when the calculated results of steel structures subjected to rare earthquake without considering damage were close to the collapse limit, the actual story drift of structure might already exceed the limit, leading to a certain security risk. ECM could simulate the damage and degradation behaviors of steel structures more accurately, and improve the calculation accuracy of traditional beam element model with acceptable computational efficiency.

A surrogate model-based framework for seismic resilience estimation of bridge transportation networks

  • Sungsik Yoon ;Young-Joo Lee
    • Smart Structures and Systems
    • /
    • v.32 no.1
    • /
    • pp.49-59
    • /
    • 2023
  • A bridge transportation network supplies products from various source nodes to destination nodes through bridge structures in a target region. However, recent frequent earthquakes have caused damage to bridge structures, resulting in extreme direct damage to the target area as well as indirect damage to other lifeline structures. Therefore, in this study, a surrogate model-based comprehensive framework to estimate the seismic resilience of bridge transportation networks is proposed. For this purpose, total system travel time (TSTT) is introduced for accurate performance indicator of the bridge transportation network, and an artificial neural network (ANN)-based surrogate model is constructed to reduce traffic analysis time for high-dimensional TSTT computation. The proposed framework includes procedures for constructing an ANN-based surrogate model to accelerate network performance computation, as well as conventional procedures such as direct Monte Carlo simulation (MCS) calculation and bridge restoration calculation. To demonstrate the proposed framework, Pohang bridge transportation network is reconstructed based on geographic information system (GIS) data, and an ANN model is constructed with the damage states of the transportation network and TSTT using the representative earthquake epicenter in the target area. For obtaining the seismic resilience curve of the Pohang region, five epicenters are considered, with earthquake magnitudes 6.0 to 8.0, and the direct and indirect damages of the bridge transportation network are evaluated. Thus, it is concluded that the proposed surrogate model-based framework can efficiently evaluate the seismic resilience of a high-dimensional bridge transportation network, and also it can be used for decision-making to minimize damage.

Damage Investigation of Pilotis Structures and Analysis of Damage Causes by Pohang Earthquake (포항지진에 의한 필로티 건축물 피해조사 및 피해원인 분석)

  • Kim, Ju-Chan;Shin, Seung-Hoon;Oh, Sang-Hoon
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.3
    • /
    • pp.3-10
    • /
    • 2019
  • On November 15, 2017, an earthquake($M_L5.4$) occurred in Pohang. Pohang earthquake was the second largest earthquake since earthquake was observed in Korea, but structural damage caused by earthquake was biggest. Structural damage caused by Pohang earthquake was mainly caused by schools and pilotis, above all damage to pilotis was outstanding. This is because area where pilotis structures are concentrated is located near epicenter, and seismic performance of pilotis structures is not excellent compared with general structures. In this study, described results of damage investigation and analysis of damage causes through analysis of pilotis Structures on 131 buildings that were investigated immediately after Pohang earthquake. In addition, cause of damage was analyzed through analysis of seismic wave. Investigation site was selected to Jangseong-dong, where damage occurred in large numbers. Damage level was classified into A, B, and C level by measuring residual crack width and story drift of structural members.

Seismic Risk Analysis of Reinforced Concrete Bridge Piers using Local Damage (국부손상을 이용한 RC교각의 지진위험도 분석)

  • Lee, Dae-Hyoung;Kim, Hyun-Jun;Park, Chang-Ky;Chung, Young-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05a
    • /
    • pp.194-197
    • /
    • 2006
  • This study represents results of fragility curve development for 4-span continuous bridge. 2 type bridge model is chosen frame type and 2-roller 1-hinge type. To research the response of bridge under earthquake excitation, Monte Carlo simulation is performed to study nonlinear dynamic analysis. For nonlinear time history analysis a set of 150 synthetic time histories were generated. Fragility curves in this study are represented by lognormal distribution functions with two parameters and developed as a function of PGA. Five damage states were defined to express the condition of damage based on the actual experimental damage data of bridge column. As a result of this research, the value of damage probability corresponding to each damage state were determined and frame type bridge are favorable under seismic event.

  • PDF