• 제목/요약/키워드: seismic characteristics

Search Result 1,443, Processing Time 0.027 seconds

Earthquake Response Analysis of a Buried Gas Pipeline (매설가스배관의 지진응답해석)

  • Lee, Do-Hyung;Cho, Kyu-Sang;Chung, Tae-Young;Kong, Jung-Sik
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.6
    • /
    • pp.41-52
    • /
    • 2007
  • Earthquake time-history analyses have been carried out for a buried gas pipeline of X65 which is of popular use in Korea. Parameters included are shape of a buried gas pipeline, soil characteristics, single and multiple earthquake input ground motions and burial depths. Predicted response of strain and relative displacement are then compared with allowable strain and displacement capacity calculated by Guidelines for the Seismic Design of Buried Gas Pipelines, KOGAS. Comparative studies show that strains are in general affected by the burial depths together with change of soil conditions. Regarding the relative displacement, while axial relative displacement is not influenced by the burial depths, transverse relative displacement is affected by both burial depths as well as soil conditions. In all, the current study is encouraged to give a useful information for healthy earthquake evaluation of a buried pipeline.

An Efficient Implementation of Hybrid $l^1/l^2$ Norm IRLS Method as a Robust Inversion (강인한 역산으로서의 하이브리드 $l^1/l^2$ norm IRLS 방법의 효율적 구현기법)

  • Ji, Jun
    • Geophysics and Geophysical Exploration
    • /
    • v.10 no.2
    • /
    • pp.124-130
    • /
    • 2007
  • Least squares ($l^2$ norm) solutions of seismic inversion tend to be very sensitive to data points with large errors. The $l^1$ norm minimization gives more robust solutions, but usually with higher computational cost. Iteratively reweighted least squares (IRLS) method gives efficient approximate solutions of these $l^1$ norm problems. I propose an efficient implementation of the IRLS method for a hybrid $l^1/l^2$ minimization problem that behaves as $l^2$ norm fit for small residual and $l^1$ norm fit for large residuals. The proposed algorithm shows more robust characteristics to the decision of the threshold value than the l1 norm IRLS inversion does with respect to the threshold value to avoid singularity.

Application of Geophysical Exploration Technique to the Identification of Active Weak Zones in Large Scale Mountainous Region (대규모 산지지반 활동연약대 규명을 위한 지구물리탐사기법의 활용 연구)

  • Shin, Hyung Ohk;Kim, Man-Il;Yoon, Wang Joong
    • Geophysics and Geophysical Exploration
    • /
    • v.21 no.3
    • /
    • pp.162-170
    • /
    • 2018
  • The purpose of this study is to understand the ground change of large scale mountainous region and to estimate the active weak zone using geophysical exploration (electrical resistivity and refraction seismic explorations) in large scale deep landslide area located in Wanjugun, Jeollabukdo. We also analyzed the characteristics of deep landslides occurred in metamorphic rocks region and confirmed the approximate scale. As a result of comparative analysis of N-value by standard penetration test (SPT), low resistivity anomaly, and tension crack identified from field investigation, a discontinuity in soil layer was estimated at 10 ~ 15 m below the surface. Based on this results, the distribution pattern of active weak zone was confirmed between the discontinuity in soil layer and estimation line of bedrock.

Evaluation of Vibration Characteristics of Operating Rotational Machines Depending of Types of Foundation (기초형식에 따른 회전기기의 가동중 진동특성 분석)

  • Kim, Min-Kyu;Choun, Young-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.3 s.55
    • /
    • pp.63-72
    • /
    • 2007
  • The Emergency Diesel Generator (EDG) is a very important equipment for the safety of a Nuclear Power Plant (NPP). In this study, the operating vibration of three kinds of EDG systems was measured. The target EDG systems are Yonggwang 5 unit and Ulchin 2 and 3 units. The Yonggwang 5 and Ulchin 3 unit EDG systems are the same type but the foundation systems are different. One is an anchor bolt type and the other is a spring and viscous-damper type. The purpose of these measurements is for a verification of the vibration isolation effect depending on the foundation system. As a result, It can be said that the spring and viscous damper system of the EDG performed better for the vibration isolation than that of anchor bolt type.

Development of Efficient Seismic Analysis Model using 3D Rigid-body for Wall-Frame Structures with an Eccentric Core (삼차원 T형강체를 이용한 편심코어를 가진 전단벽-골조 구조물의 효율적인 지진해석모델 개발)

  • Park, Yong-Koo;Lee, Dong-Guen;Kim, Hyun-Su
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.26 no.1
    • /
    • pp.19-28
    • /
    • 2013
  • In a shear wall-frame structural system, the structural response is determined by the interaction between the shear wall in bending mode and the frame in shear mode. In order to effectively consider these characteristics of a shear wall-frame structure, the simplified numerical model using the T-shape rigid body was suggested in the previous study. Based on the previously proposed model, an efficient numerical model for a wall-frame structure with an eccentric core has been proposed in this study. To this end, the previously proposed 2D model is extended to the 3D model and it is enhanced by considering torsion effects. As a result, the enhanced model can be applied to the analysis of a wall-frame structure with an eccentric core as well as a centric core.

Study on Quantification Method Based on Monte Carlo Sampling for Multiunit Probabilistic Safety Assessment Models

  • Oh, Kyemin;Han, Sang Hoon;Park, Jin Hee;Lim, Ho-Gon;Yang, Joon Eon;Heo, Gyunyoung
    • Nuclear Engineering and Technology
    • /
    • v.49 no.4
    • /
    • pp.710-720
    • /
    • 2017
  • In Korea, many nuclear power plants operate at a single site based on geographical characteristics, but the population density near the sites is higher than that in other countries. Thus, multiunit accidents are a more important consideration than in other countries and should be addressed appropriately. Currently, there are many issues related to a multiunit probabilistic safety assessment (PSA). One of them is the quantification of a multiunit PSA model. A traditional PSA uses a Boolean manipulation of the fault tree in terms of the minimal cut set. However, such methods have some limitations when rare event approximations cannot be used effectively or a very small truncation limit should be applied to identify accident sequence combinations for a multiunit site. In particular, it is well known that seismic risk in terms of core damage frequency can be overestimated because there are many events that have a high failure probability. In this study, we propose a quantification method based on a Monte Carlo approach for a multiunit PSA model. This method can consider all possible accident sequence combinations in a multiunit site and calculate a more exact value for events that have a high failure probability. An example model for six identical units at a site was also developed and quantified to confirm the applicability of the proposed method.

Study of Integrated Optimal Design of Smart Top-Story Isolation and Building Structures in Regions of Low-to-Moderate Seismicity (중약진지역 구조물과 스마트 최상층 면진시스템의 통합최적설계에 대한 연구)

  • Kim, Hyun-Su;Kang, Joo-Won
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.5
    • /
    • pp.13-20
    • /
    • 2013
  • In order to reduce seismic responses of a structure, additional dampers and vibration control devices are generally considered. Usually, control performance of additional devices are investigated for optimal design without variation of characteristics of a structure. In this study, multi-objective integrated optimization of structure-smart control device is conducted and possibility of reduction of structural resources of a building structure with smart top-story isolation system has been investigated. To this end, 20-story example building structure was selected and an MR damper and low damping elastomeric bearings were used to compose a smart base isolation system. Artificial earthquakes generated based on design spectrum of low-to-moderate seismicity regions are used for structural analyses. Based on numerical simulation results, it has been shown that a smart top-story isolation system can effectively reduce both structural responses and isolation story drifts of the building structure in low-to-moderate seismicity regions. The integrated optimal design method proposed in this study can provide various optimal designs that presents good control performance by appropriately reducing the amount of structural material and damping device.

Material Properties of 400MPa Grade Hot Rolled H-beam(SHN400) for Building Structure (400MPa급 건축구조용 열간압연 H형강(SHN400)의 소재 특성)

  • Kim, Hee-Dong;Choi, Byoung-Jeong;Kim, Sang-Sub;Kim, Chul-Hwan;Oh, Young-Suk
    • Journal of Korean Society of Steel Construction
    • /
    • v.23 no.4
    • /
    • pp.515-522
    • /
    • 2011
  • The purpose of this study was to evaluate the material characteristics of SHN400 steel, which is suitable as a steel material for building structures, using the experimental approach. For this purpose, the chemical composition test, tensile test, macro test, micro test, and charpy notch impact test were conducted with specimens taken from the highest, thickest, and commonly used H-beams for girder or beam members. Each test was conducted under the Korean Standard(KS) test conditions. All the test results satisfied the requirements of KS (KS D 3866) and the steel material for seismic design. The carbon equivalent value (Ceq), which is related to weldability, and the yield ratio, which is related to inelastic behavior, showed especially good results. Thus, SHN400 is definitely suitable as the steel material for building structures.

CONCEPTUAL DESIGN OF THE SODIUM-COOLED FAST REACTOR KALIMER-600

  • Hahn, Do-Hee;Kim, Yeong-Il;Lee, Chan-Bock;Kim, Seong-O;Lee, Jae-Han;Lee, Yong-Bum;Kim, Byung-Ho;Jeong, Hae-Yong
    • Nuclear Engineering and Technology
    • /
    • v.39 no.3
    • /
    • pp.193-206
    • /
    • 2007
  • The Korea Atomic Energy Research Institute has developed an advanced fast reactor concept, KALIMER-600, which satisfies the Generation IV reactor design goals of sustainability, economics, safety, and proliferation resistance. The concept enables an efficient utilization of uranium resources and a reduction of the radioactive waste. The core design has been developed with a strong emphasis on proliferation resistance by adopting a single enrichment fuel without blanket assemblies. In addition, a passive residual heat removal system, shortened intermediate heat-transport system piping and seismic isolation have been realized in the reactor system design as enhancements to its safety and economics. The inherent safety characteristics of the KALIMER-600 design have been confirmed by a safety analysis of its bounding events. Research on important thermal-hydraulic phenomena and sensing technologies were performed to support the design study. The integrity of the reactor head against creep fatigue was confirmed using a CFD method, and a model for density-wave instability in a helical-coiled steam generator was developed. Gas entrainment on an agitating pool surface was investigated and an experimental correlation on a critical entrainment condition was obtained. An experimental study on sodium-water reactions was also performed to validate the developed SELPSTA code, which predicts the data accurately. An acoustic leak detection method utilizing a neural network and signal processing units were developed and applied successfully for the detection of a signal up to a noise level of -20 dB. Waveguide sensor visualization technology is being developed to inspect the reactor internals and fuel subassemblies. These research and developmental efforts contribute significantly to enhance the safety, economics, and efficiency of the KALIMER-600 design concept.

Probabilistic Analysis of Liquefaction Induced Settlement Considering the Spatial Variability of Soils (지반의 공간변동성을 고려한 액상화에 의한 침하량의 확률론적 해석)

  • Bong, Tae-Ho;Kim, Byoung-Il
    • Journal of the Korean Geotechnical Society
    • /
    • v.33 no.5
    • /
    • pp.25-35
    • /
    • 2017
  • Liquefaction is one of the major seismic damage, and several methods have been developed to evaluate the possibility of liquefaction. Recently, a probabilistic approach has been studied to overcome the drawback of deterministic approaches, and to consider the uncertainties of soil properties. In this study, the spatial variability of cone penetration resistance was evaluated using CPT data from three locations having different variability characteristics to perform the probabilistic analysis considering the spatial variability of soil properties. Then the random fields of cone penetration resistance considering the spatial variability of each point were generated, and a probabilistic analysis of liquefaction induced settlement was carried out through CPT-based liquefaction evaluation method. As a result, the uncertainty of soil properties can be overestimated when the spatial variability is not considered, and significant probabilistic differences can occur up to about 30% depending on the allowable settlement.