• Title/Summary/Keyword: seismic behaviors

Search Result 272, Processing Time 0.027 seconds

Seismic Behavior of High-Strength Concrete Square Short Columns Confined in Thin Steel Shell

  • Han, Byung-Chan;Yun, Hyun-Do;Chung, Soo-Young
    • KCI Concrete Journal
    • /
    • v.12 no.1
    • /
    • pp.23-34
    • /
    • 2000
  • Experiments were carried out to investigate the seismic behaviors, such as lateral strength, ductility and energy-dissipation capacity. of high-strength concrete (HSC) square short column confined in thin steel shell. The primary objective of the study was to investigate the suitability of using HSC square columns confined in thin steel shell in region of moderate-to-high seismic risk. A total of six columns, consisting of two ordinarily reinforced concrete square short columns and four reinforced concrete square short columns confined in thin steel shell was tested. Column specimens, short columns in a moment resisting frame with girder. were tested under a constant axial and reversed cyclic lateral loads. To design the specimens. transverse reinforcing methods, level of axial load applied, and the steel tube width-thickness ratio (D/t) were chosen as main parameters. Test results were also discussed and compared in the light of improvements in general behaviors, ductility, and energy-absorption capacities. Compared to conventionally reinforced concrete columns, the HSC columns confined in thin steel shell had similar load-displacement hysteretic behavior but exhibited greater energy-dissipation characteristics . It is concluded that, in strong earthquake areas, the transverse reinforcing method by using a thin steel shell (D/t=125) is quite effective to make HSC short columns with very strong and ductile.

  • PDF

Dynamci Behaviors of Seismically Isolated Bridges According to Different Location of Lead Rubber Bearings (납면진장치의 위치변화에 따른 면진교량의 동특성)

  • 박정근
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.383-390
    • /
    • 2000
  • The purpose of this paper is to investigate dynamic characteristics of an isolated bridge with a different location of seismic isolation at piers and to determine the best location of seismic isolation. The substructure of the bridge is two column framed type reinforced concrete and has relatively high piers so it has long natural period, To decide the best location of seismic isolations displacement shear force bending moment acceleration and absorbed energy are compared using fast nonlinear analysis. To isolate overall structures is effective to bending moments and shear forces for long period bridges.

  • PDF

Review of Code Provisions on Seismic Design of Fire Protection System (소방설비 내진설계에 관한 각국 기준 비교 연구)

  • Lee, Hyun-Jin;Shin, Yi-Chul;Lee, Jae-Young;Seo, Dong-Goo;Han, Byung-Chan;Kim, Jae-Hwan;Kwon, Young-Jin
    • Proceedings of the Korea Institute of Fire Science and Engineering Conference
    • /
    • 2008.04a
    • /
    • pp.238-241
    • /
    • 2008
  • In this paper, provisions related with the seismic design and equipments of fire protection system are being considered. The provisions from various international codes on seismic design fire protection system were reviewed. The codes, reviewed are, Japanese code, NFPA guideline and Korean code. It is noted that all the codes excepted to korean code consider earthquake effect to evaluate seismic forces and behaviors. But, korean provision are not covered in seismic response in all. A brief description on limitations in korean code is also presented.

  • PDF

Method of Evaluation of the Strength Required in Current Seismic Design Code (현행 내진설계 규준에서 요구되는 수평강도의 평가 방법)

  • 한상환
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 1997.10a
    • /
    • pp.193-200
    • /
    • 1997
  • Current seismic design code is based of the assumption that the designed structures would be behaved inelastically during a severe earthquake ground motion. For this reason, seismic design forces calculated by seismic codes are much lower than the forces generated by design earthquakes which makes structures responding elastically. Present procedures for calculating seismic design forces are based on the use of elastic spectra reduced by a strength reduction factors known as "response modificaion factor". Because these factors were determined empirically, it is difficult to know how much inelastic behaviors of the structures exhibit. In this study, base shear forces required to maintain target ductility ratio were first calculated from nonlinear dynamic analysis on the single degree of freedom system. And then, base shear foeces specified in seismic design code compare with above results. If the strength(base shear) required strength should be filled by overstrength and/or redundancy. Therefore, overstrength of moment resisting frame structure will be estimated from the results of static nonlinear analysis(push-over analysis).analysis).

  • PDF

Nonlinear Analysis Model Development of Seismic Isolator Using Horizontal Seismic Excitation Responses of Isolated Test Structure (면진시험구조물의 수평가진응답을 활용한 면진장치 비선형 해석모델개발)

  • Lee, Jae-Han;Koo, Gyeong-Hoi;Yoo, Bong
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2002.04a
    • /
    • pp.157-165
    • /
    • 2002
  • The seismic excitation test results of an isolated test structure for artificial time history excitation are summarized for structural modeling of the isolated structure and isolation bearing. Based on the actual dynamic behaviors and the seismic responses of the test model, linear and bilinear models for isolators are suggested. Seismic analyses are performed and compared with those of the seismic tests. The developed bilinear model is well applicable only to large shear strain area of isolators.

  • PDF

Study on seismic retrofit of structures using SPSW systems and LYP steel material

  • Zirakian, Tadeh;Zhang, Jian
    • Earthquakes and Structures
    • /
    • v.10 no.1
    • /
    • pp.1-23
    • /
    • 2016
  • Steel plate shear walls (SPSWs) have been shown to be efficient lateral force-resisting systems, which are increasingly used in new and retrofit construction. These structural systems are designed with either stiffened and stocky or unstiffened and slender web plates based on disparate structural and economical considerations. Based on some limited reported studies, on the other hand, employment of low yield point (LYP) steel infill plates with extremely low yield strength, and high ductility as well as elongation properties is found to facilitate the design and improve the structural behavior and seismic performance of the SPSW systems. On this basis, this paper reports system-level investigations on the seismic response assessment of multi-story SPSW frames under the action of earthquake ground motions. The effectiveness of the strip model in representing the behaviors of SPSWs with different buckling and yielding properties is primarily verified. Subsequently, the structural and seismic performances of several code-designed and retrofitted SPSW frames with conventional and LYP steel infill plates are investigated through detailed modal and nonlinear time-history analyses. Evaluation of various seismic response parameters including drift, acceleration, base shear and moment, column axial load, and web-plate ductility demands, demonstrates the capabilities of SPSW systems in improving the seismic performance of structures and reveals various advantages of use of LYP steel material in seismic design and retrofit of SPSW systems, in particular, application of LYP steel infill plates of double thickness in seismic retrofit of conventional steel and code-designed SPSW frames.

Seismic bearing capacity of skirted footings using finite element analysis

  • Rajesh P. Shukla;Prabir Kumar Basudhar
    • Geomechanics and Engineering
    • /
    • v.39 no.1
    • /
    • pp.13-26
    • /
    • 2024
  • Studies pertaining to the seismic bearing capacity analysis of skirted footings using the pseudo-static approach for estimation of the earthquake force in association with finite element method have been presented in this paper. An attempt has been made to explain the behaviors of the skirted footings by means of failure patterns obtained for rigid and flexible skirts. The skirts enhance the seismic bearing to some extent with an increase in seismic loading, after which it decreases nonlinearly. The effectiveness of skirts increases initially to some extent with an increase in seismic loading, after which it decreases nonlinearly. Other parameters that inversely affect the effectiveness of skirts are the depth of footing and the internal friction angle of the soil. The detailed finite element analysis regarding the various failure patterns of skirted footings under seismic forces shows the failure mechanism changes from a general shear failure to local shear failure with an increase in seismic force. An opposite trend has been observed with the increase in the angle of internal friction of the soil. The obtained analysis results suggest that a rigid skirted footing behaves similar to a conventional strip footing under seismic and static loadings. The excessive deflection of flexible skirts under combined gravity and seismic loading renders them relatively ineffective than rigid skirts.

Experimental Study on Nonlinear Behaviors of A 1:12 Scale 10-Story Reinforced Concrete Frame with Nonseismic Details (비내진 상세를 가진 1:12축소 10층 R.C.골조의 비선형 거동에 관한 실험 연구)

  • Lee, Han-Seon;Kang, Kyi-Yong
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.255-266
    • /
    • 1999
  • The objective of this experiment is to observe the elastic and inelastic behaviors of high-rise reinforced concrete frames having non-seismic details. To do this, a building frame designed according to Korean seismic code and detailed in the Korean conventional practice was selected. A 1:12 scale plane frame model was manufactured according to similitude law. A reversed lateral load test and a monotonic pushover test were performed under the displacement control. To simulate the earthquake effects, the lateral force distribution was maintained to be an inverse triangle by using a whiffle tree. From the tests, base shears, crack pattern, local rotations in the ends of critical members and the relations between interstory drift versus story shear are obtained. Based on test results, conclusions are drawn on the implications of the elastic and inelastic behaviors of a high-rise reinforced concrete frame having non-seismic details.

Seismic behaviors of ring beams joints of steel tube-reinforced concrete column structure

  • Zhang, Yingying;Pei, Jianing;Huang, Yuan;Lei, Ke;Song, Jie;Zhang, Qilin
    • Steel and Composite Structures
    • /
    • v.27 no.4
    • /
    • pp.417-426
    • /
    • 2018
  • This paper presents the seismic behaviors and restoring force model of ring beam joints of steel tube-reinforced concrete column structure under cyclic loading. First, the main failure mode, ultimate bearing capacity, stiffness degradation and energy dissipation capacity are studied. Then, the effects of concrete grade, steel grade, reinforcement ratio and radius-to-width ratios are discussed. Finally, the restoring force model is proposed. Results show that the ring beam joints of steel tube-reinforced concrete column structure performs good seismic performances. With concrete grade increasing, the ultimate bearing capacity and energy dissipation capacity increase, while the stiffness degradation rates increases slightly. When the radius-width ratio is 2, with reinforcement ratio increasing, the ultimate bearing capacity decreases. However, when the radius-to-width ratios are 3, with reinforcement ratio increasing, the ultimate bearing capacity increases. With radius-to-width ratios increasing, the ultimate bearing capacity decreases slightly and the stiffness degradation rate increases, but the energy dissipation capacity increases slightly.

Seismic effects of epicenter distance of earthquake on 3D damage performance of CG dams

  • Karalar, Memduh;Cavusli, Murat
    • Earthquakes and Structures
    • /
    • v.18 no.2
    • /
    • pp.201-213
    • /
    • 2020
  • Seismic damages that occurred by the effects of epicenter distance of the earthquake are one of the most important problems for the earthquake engineering. In this study, it is aimed to examine the nonlinear seismic behaviors of concrete gravity (CG) dams considering various epicenter distances. For this purpose, Boyabat CG dam that is one of the biggest concrete gravity dams in Turkey is selected as a numerical application. FLAC3D software based on finite difference method is used for modelling and analyzing of the dam. Drucker-Prager nonlinear material model is used for the concrete body and Mohr-Coulomb nonlinear material model is taken into account for the foundation. Special interface elements are used between dam body and foundation to represent interaction condition. Free-field and quiet non-reflecting boundary conditions are utilized for the main surfaces of 3D model. Total 5 various epicenter distances of 1989 Loma Prieta earthquake are considered in 3D earthquake analyses and these distances are 5 km, 11 km, 24 km, 85 km and 93 km, respectively. According to 3D seismic results, x-y-z displacements, principal stresses and shear strain failures of the dam are evaluated in detail. It is clearly seen from this study that the nonlinear seismic behaviors of the CG dams change depending to epicenter distance of the earthquake. Thus, it is clearly recommended in this study that when a CG dam is modelled or analyzed, distance of the earthquake fault to the dam should be strongly examined in detail. Otherwise, earthquake damages can be occurred in the concrete dam body by the effects of seismic loads.