• Title/Summary/Keyword: seismic areas

Search Result 275, Processing Time 0.026 seconds

Site Classification for Incheon According to Site-Specific Seismic Response Parameters by Estimating Geotechnical Spatial Information Based on GIS (GIS 기반 지반공간정보 추정을 통한 부지고유 지진응답 매개변수 기반 인천 지역의 부지분류)

  • SUN, Chang-Guk;KIM, Han-Saem
    • Journal of the Korean Association of Geographic Information Studies
    • /
    • v.19 no.4
    • /
    • pp.17-35
    • /
    • 2016
  • Earthquake-induced disasters are often more severe in locations with soft soils than firm soils or rocks due to differences in ground motion amplification. On a regional scale, such differences can be estimated by spatially predicting subsurface soil thickness over the entire target area. In general, soil deposits are generally deeper in coastal or riverside areas than in inland regions. In this study, a coastal metropolitan area, Incheon, was selected to assess site effects and provide information on seismic hazards. Spatial prediction of geotechnical layers was performed for the entire study area within the GIS framework. Approximately 7,000 existing borehole drilling data in the Incheon area were gathered and archived into the GIS Database (DB). In addition, surface geotechnical data were acquired from a walkover survey. Based on the built geotechnical DB, spatial zoning maps of site-specific seismic response parameters were created and presented for use in a regional seismic strategy. Site response parameters were performed to determine site coefficients for seismic design over the entire target area and compared with each other. Site classifications and subsequent seismic zoning were assigned based on site coefficients. From this seismic zonation case study in Incheon, we verified that geotechnical GIS-DB can create spatial zoning maps of site-specific seismic response parameters that are useful for seismic hazard mitigation particularly in coastal metropolitan areas.

A SEISMIC DESIGN OF NUCLEAR REACTOR BUILDING STRUCTURES APPLYING SEISMIC ISOLATION SYSTEM IN A HIGH SEISMICITY REGION -A FEASIBILITY CASE STUDY IN JAPAN

  • Kubo, Tetsuo;Yamamoto, Tomofumi;Sato, Kunihiko;Jimbo, Masakazu;Imaoka, Tetsuo;Umeki, Yoshito
    • Nuclear Engineering and Technology
    • /
    • v.46 no.5
    • /
    • pp.581-594
    • /
    • 2014
  • A feasibility study on the seismic design of nuclear reactor buildings with application of a seismic isolation system is introduced. After the Hyogo-ken Nanbu earthquake in Japan of 1995, seismic isolation technologies have been widely employed for commercial buildings. Having become a mature technology, seismic isolation systems can be applied to NPP facilities in areas of high seismicity. Two reactor buildings are discussed, representing the PWR and BWR buildings in Japan, and the application of seismic isolation systems is discussed. The isolation system employing rubber bearings with a lead plug positioned (LRB) is examined. Through a series of seismic response analyses using the so-named standard design earthquake motions covering the design basis earthquake motions obtained for NPP sites in Japan, the responses of the seismic isolated reactor buildings are evaluated. It is revealed that for the building structures examined herein: (1) the responses of both isolated buildings and isolating LRBs fulfill the specified design criteria; (2) the responses obtained for the isolating LRBs first reach the ultimate condition when intensity of motion is 2.0 to 2.5 times as large as that of the design-basis; and (3) the responses of isolated reactor building fall below the range of the prescribed criteria.

Seismic performance of low-rise reinforced concrete moment frames under carbonation corrosion

  • Vaezi, Hossein;Karimi, Amir;Shayanfar, Mohsenali;Safiey, Amir
    • Earthquakes and Structures
    • /
    • v.20 no.2
    • /
    • pp.215-224
    • /
    • 2021
  • The carbon dioxide present in the atmosphere is one of the main reasons for the corrosion of bridges, buildings, tunnels, and other reinforced concrete (RC) structures in most industrialized countries. With the growing use of fossil fuels in the world since the Industrial Revolution, the amount of carbon dioxide in urban and industrial areas of the world has grown significantly, which increases the chance of corrosion caused by carbonation. The process of corrosion leads to a change in mechanical properties of rebars and concrete, and consequently, detrimentally impacting load-bearing capacity and seismic behavior of RC structures. Neglecting this phenomenon can trigger misleading results in the form of underestimating the seismic performance metrics. Therefore, studying the carbonation corrosion influence on the seismic behavior of RC structures in urban and industrial areas is of great significance. In this study, a 2D modern RC moment frame is developed to study and assess the effect of carbonation corrosion, in 5-year intervals, for a 50 years lifetime under two different environmental conditions. This is achieved using the nonlinear static and incremental dynamic analysis (IDA) to evaluate the reinforcement corrosion effects. The reduction in the seismic capacity and performance of the reinforced concrete frame, as well as the collapse probability over the lifetime for different corrosion scenarios, is examined through the capacity curves obtained from nonlinear static analysis and the fragility curves obtained from IDA.

The development of the seismic fragility curves of existing bridges in Indonesia (Case study: DKI Jakarta)

  • Veby Citra Simanjuntak;Iswandi Imran;Muslinang Moestopo;Herlien D. Setio
    • Structural Monitoring and Maintenance
    • /
    • v.10 no.1
    • /
    • pp.87-105
    • /
    • 2023
  • Seismic regulations have been updated from time to time to accommodate an increase in seismic hazards. Comparison of seismic fragility of the existing bridges in Indonesia from different historical periods since the era before 1990 will be the basis for seismic assessment of the bridge stock in Indonesia, most of which are located in earthquake-prone areas, especially those built many years ago with outdated regulations. In this study, seismic fragility curves were developed using incremental non-linear time history analysis and more holistically according to the actual strength of concrete and steel material in Indonesia to determine the uncertainty factor of structural capacity, βc. From the research that has been carried out, based on the current seismic load in SNI 2833:2016/Seismic Map 2017 (7% probability of exceedance in 75 years), the performance level of the bridge in the era before SNI 2833:2016 was Operational-Life Safety whereas the performance level of the bridge designed with SNI 2833:2016 was Elastic - Operational. The potential for more severe damage occurs in greater earthquake intensity. Collapse condition occurs at As = FPGA x PGA value of bridge Era I = 0.93 g; Era II = 1.03 g; Era III = 1.22 g; Era IV = 1.54 g. Furthermore, the fragility analysis was also developed with geometric variations in the same bridge class to see the effect of these variations on the fragility, which is the basis for making bridge risk maps in Indonesia.

Seismic Response of Exterior RC Column-to-Steel Beam Connections (I. Experiment) (콘크리트 기둥-강재 보 외부 접합부의 내진성능(I. 실험))

  • 조순호
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2000.04a
    • /
    • pp.275-282
    • /
    • 2000
  • The seismic behavior of moment connections consisting of reinforced concrete columns and steel beams is investigated based on four 2/3 scale tests of exterior beam-column joints subject to reversed cyclic loading. The major test parameters were the number of hoops the isolated concrete contribution and the use of headed studs in the joint regions between columns and beams. Their influence on the seismic response of the connections is presented and compared. Among them the CF3 specimen containing two hoops each in the joint and column regions above and below exhibited the most favourable hysteretic response. This indicates that this type of joint details can be used in the low seismic areas such as Korea.

  • PDF

Seismic performance of secondary systems housed in isolated and non-isolated building

  • Kumar, Pardeep;Petwal, Sandeep
    • Earthquakes and Structures
    • /
    • v.16 no.4
    • /
    • pp.401-413
    • /
    • 2019
  • The concept of base isolation for equipment is well known. Its application in buildings and structures is rather challenging. Introduction of horizontal flexibility at the base helps in proper energy dissipation at the base level thus reducing the seismic demand of the super structure to be considered during design. The present study shows the results of a series of numerical simulation studies on seismic responses of secondary system (SS) housed in non-isolated and base-isolated primary structures (PS) including equipment-structure interactions. For this study the primary structure consists of two similar single bay three-store reinforced cement concrete (RCC) Frame building, one non-isolated with conventional foundation and another base isolated with Lead plug bearings (LPB) constructed at IIT Guwahati, while the secondary system is modeled as a steel frame. Time period of the base isolated building is higher than the fixed building. Due to the presence of isolator, Acceleration response is significantly reduced in both (X and Y) direction of Building. It have been found that when compared to fixed base building, the base isolated building gives better performance in high seismic prone areas.

Capacity-spectrum push-over analysis of rock-lining interaction model for seismic evaluation of tunnels

  • Sina Majidian;Serkan Tapkin;Emre Tercan
    • Earthquakes and Structures
    • /
    • v.26 no.5
    • /
    • pp.327-336
    • /
    • 2024
  • Evaluation of tunnel performance in seismic-prone areas demands efficient means of estimating performance at different hazard levels. The present study introduces an innovative push-over analysis approach which employs the standard earthquake spectrum to simulate the performance of a tunnel. The numerical simulation has taken into account the lining and surrounding rock to calculate the rock-tunnel interaction subjected to a static push-over displacement regime. Elastic perfectly plastic models for the lining and hardening strain rock medium were used to portray the development of plastic hinges, nonlinear deformation, and performance of the tunnel structure. Separately using a computational algorithm, the non-linear response spectrum was approximated from the average shear strain of the rock model. A NATM tunnel in Turkey was chosen for parametric study. A seismic performance curve and two performance thresholds are introduced that are based on the proposed nonlinear seismic static loading approach and the formation of plastic hinges. The tunnel model was also subjected to a harmonic excitation with a smooth response spectrum and different amplitudes in the fully-dynamic phase to assess the accuracy of the approach. The parametric study investigated the effects of the lining stiffness and capacity and soil stiffness on the seismic performance of the tunnel.

The Attenuation Structure of the South Korea: A review

  • Chung, T. W.;Noh, M. H.;Matsumoto, S.
    • Journal of the Korean Geophysical Society
    • /
    • v.9 no.3
    • /
    • pp.199-207
    • /
    • 2006
  • Fukuoka earthquake on March 20, 2005 showed the potential hazard of large events out of S. Korea. From the viewpoint of seismic hazard, seismic amplitude decrease Q-1 is very important. Related to the crustal cracks induced by the earthquakes, the value of Q-1- high Q-1 regions are more attenuating than low Q-1 regions - shows a correlation with seismic activity; relatively higher values of Q-1 have been observed in seismically active areas than in stable areas. For the southeastern and central S. Korea, we first simultaneously estimated QP-1 and QS-1 by applying the extended coda-normalization method to KIGAM and KNUE network data. Estimated QP-1 and QS-1 values are 0.009 f-1.05 and 0.004 f-0.70 for southeastern S. Korea and 0.003 f -0.54 and 0.003 f -0.42 for central S. Korea, respectively. These values agree with those of seismically inactive regions such as shield. The low QLg-1 value, 0.0018f -0.54 was also obtained by the coda normalization method. In addition, we studied QLg-1 by applying the source pair/receiver pair (SPRP) method to both domestic and far-regional events. The obtained QLg-1 for all Fc is less than 0.002, which is reasonable value for a seismically inactive region.

  • PDF

Artificial blasts discrimination by using seismo-acoustic data in 2001 (지진-공중음파 자료를 이용한 2001년도 인공발파 식별)

  • 제일영;전명순;전정수
    • Proceedings of the Earthquake Engineering Society of Korea Conference
    • /
    • 2002.03a
    • /
    • pp.59-63
    • /
    • 2002
  • Artificial blasts, defined as seismo-acoustic events, were discriminated from natural earthquakes in the Korean Peninsula by analyzing seismo-acoustic data. 219 seismo-acoustic events corresponding to 9 percent of total seismic events in 2001 were analyzed and classified as artificial surface blasts. Most seismo-acoustic events were concentrated in several areas. This distribution pattern was similar to the previous result in 1999-2000. Most of seismo-acoustic events especially concentrated at 7 small areas in North and South Korea. The number of seismo-acoustic events occurred in North and South Korea was 79 and 140 events, respectively. The local magnitude of seismic events from North Korea was relatively larger than from South. And some infrasound occurred from North Korea had a characteristic of sequential arrivals of signals, which reflected the different propagation in the atmosphere.

  • PDF

Combined seismic and energy upgrading of existing reinforced concrete buildings using TRM jacketing and thermal insulation

  • Gkournelos, Panagiotis D.;Bournas, Dionysios A.;Triantafillou, Thanasis C.
    • Earthquakes and Structures
    • /
    • v.16 no.5
    • /
    • pp.625-639
    • /
    • 2019
  • The concept of the combined seismic and energy retrofitting of existing reinforced concrete (RC) buildings was examined in this paper through a number of case studies conducted on model buildings (simulating buildings of the '60s-'80s in southern Europe) constructed according to outdated design standards. Specifically, seismic and thermal analyses have been conducted prior to and after the application of selected retrofitting schemes, in order to quantify the positive effect that retrofitting could provide to RC buildings both in terms of their structural and energy performance. Advanced materials, namely the textile reinforced mortars (TRM), were used for providing seismic retrofitting by means of jacketing of masonry infills in RC frames. Moreover, following the application of the TRM jackets, thermal insulation materials were simultaneously provided to the RC building envelope, exploiting the fresh mortar used to bind the TRM jackets. In addition to the externally applied insulation material, all the fenestration elements (windows and doors) were replaced with new high energy efficiency ones. Afterwards, an economic measure, namely the expected annual loss (EAL) was used to evaluate the efficiency of each retrofitting method, but also to assess whether the combined seismic and energy retrofitting is economically feasible. From the results of this preliminary study, it was concluded that the selected seismic retrofitting technique can indeed enhance significantly the structural behaviour of an existing RC building and lower its EAL related to earthquake risks. Finally, it was found that the combined seismic and energy upgrading is economically more efficient than a sole energy or seismic retrofitting scenario for seismic areas of south Europe.