• Title/Summary/Keyword: seismic areas

Search Result 275, Processing Time 0.023 seconds

A Study to Propose Closed-form Approximations of Seismic Hazard (지진 재해도의 닫힌 근사식 제안에 관한 연구)

  • Kwag, Shinyoung;Hahm, Daegi
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.4
    • /
    • pp.245-251
    • /
    • 2018
  • In this paper, we address some issues in existing seismic hazard closed-form equations and present a novel seismic hazard equation form to overcome these issues. The presented equation form is based on higher-order polynomials, which can well describe the seismic hazard information with relatively high non-linearity. The accuracy of the proposed form is illustrated not only in the seismic hazard data itself but also in estimating the annual probability of failure (APF) of the structural systems. For this purpose, the information on seismic hazard is used in representative areas of the United States (West : Los Angeles, Central : Memphis and Kansas, East : Charleston). Examples regarding the APF estimation are the analyses of existing platform structure and nuclear power plant problems. As a result of the numerical example analyses, it is confirmed that the higher-order-polynomial-based hazard form presented in this paper could predict the APF values of the two example structure systems as well as the given seismic hazard data relatively accurately compared with the existing closed-form hazard equations. Therefore, in the future, it is expected that we can derive a new improved APF function by combining the proposed hazard formula with the existing fragility equation.

Distinct Element Modelling of Stacked Stone Pagoda for Seismic Response Analysis (지진응답 해석을 위한 적층식 석탑의 개별요소 모델링)

  • Kim, Byeong Hwa;Lee, Do Hyung
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.22 no.6
    • /
    • pp.345-352
    • /
    • 2018
  • It is inevitable to use the distinct element method in the analysis of structural dynamics for stacked stone pagoda system. However, the experimental verification of analytical results produced by the discrete element method is not sufficient yet, and the theory of distinct element method is not universal in Korea. This study introduces how to model the stacked stone pagoda system using the distinct element method, and draws some considerations in the seismic analysis procedures. First, the rocking mode and sliding mode are locally mixed in the seismic responses. Second, the vertical stiffness and the horizontal stiffness on the friction surface have the greatest influence on the seismic behavior. Third, the complete seismic analysis of stacked stone pagoda system requires a set of the horizontal, vertical, and rotational velocity time histories of the ground. However, earthquake data monitored in Korea are limited to acceleration and velocity signals in some areas.

Ductility Based Seismic Design of Circular R/C Bridge Piers (원형 철근콘크리트 교각의 연성도 내진설계)

  • Choi Jin Ho;Ko Seong Hyun;Hwang Jung Kil;Lee Jea Hoon
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.101-104
    • /
    • 2005
  • This study is to develop detailing guidelines based on ductility demand for reinforced concrete bridge columns in areas of low to moderate seismicity. The current seismic design criteria of the Korea Design Specifications for Highway Bridge (KDSHB 2005) adopted the seismic design concept and requirements of the AASHTO specifications. In order to obtain full ductile behavior under seismic loads, i.e. when applied seismic force is larger than design flexural strength of column section, a response modification factor (R=3 or 5) is used. In moderate seismicity regions, however, adopting the full ductility design concept sometimes results in construction problems due to reinforcement congestion. The objective of this paper is to suggest a new simplified seismic design of reinforced concrete bridge columns for moderate seismicity regions.

  • PDF

Seismic Performance Evaluation of System to Protect the Occurrence of Weak-Story With Braced Frame (중심 가새 골조에 형성되는 연약층을 방지하기 위한 시스템의 내진 성능 평가)

  • Kim, Da-Young;Yoo, Jung-Han
    • Journal of Korean Association for Spatial Structures
    • /
    • v.19 no.4
    • /
    • pp.45-52
    • /
    • 2019
  • The purpose of the paper is to introduce a system that reduces the occurrence of weak-story in the event of earthquake. Weak-story concentrates deformation on the story and causes all member to collapse before the capacity of all member is reached. This paper introduces Strong-Back system (SB) to protect weak story. SB is a hybrid of zipper frame, tied eccentrically braced frame, and elastic truss system and it is divided into elastic and inelastic areas. Elastic areas prevent the generation of weak story by distributing energy, and inelastic areas dissipate energy through buckling or yielding. In this paper, the seismic performance is evaluated by comparing the four type braced frame with SB through push-over analysis. The four criteria are compared from the base shear, the ductility capacity, the column failure order, and the quantity of brace. As a result, SB proved to have sufficient performance to protect the weak-story.

Visible Assessment of Earthquake-induced Geotechnical Hazards by Adopting Integrated Geospatial Database in Coastal Facility Areas (복합 공간데이터베이스 적용을 통한 해안 시설영역 지진 유발 지반재해의 가시적 평가)

  • Kim, Han-Saem;Sun, Chang-Guk
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.20 no.3
    • /
    • pp.171-180
    • /
    • 2016
  • Earthquake event keeps increasing every year, and the recent cases of earthquake hazards invoke the necessity of seismic study in Korea, as geotechnical earthquake hazards, such as strong ground motion, liquefaction and landslides, are a significant threat to structures in industrial hub areas including coastal facilities. In this study, systemized framework of integrated assessment of earthquake-induced geotechnical hazard was established using advanced geospatial database. And a visible simulation of the framework was specifically conducted at two coastal facility areas in Incheon. First, the geospatial-grid information in the 3D domain were constructed with geostatistical interpolation method composed of multiple geospatial coverage mapping and 3D integration of geo-layer construction considering spatial outliers and geotechnical uncertainty. Second, the behavior of site-specific seismic responses were assessed by incorporating the depth to bedrock, mean shear wave velocity of the upper 30 m, and characteristic site period based on the geospatial-grid. Third, the normalized correlations between rock-outcrop accelerations and the maximum accelerations of each grid were determined considering the site-specific seismic response characteristics. Fourth, the potential damage due to liquefaction was estimated by combining the geospatial-grid and accelerations correlation grid based on the simplified liquefaction potential index evaluation method.

Design Considerations of Connections in High-Rise P.C. Apartments (고층 P.C 아파트의 접합부 설계)

  • 정하선;김두영
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1989.10a
    • /
    • pp.59-62
    • /
    • 1989
  • Construction of high-rise precast concrete apartment is an atractive alternative solution for severe shortage of residential facilities, especially in metropolitan areas in Korea. New building regulations enforced since 1988 requires all buildings higher than 6 storeys to be designed for earthquake. However, we hardly have any experience on seismic design of precast concrete buildings. This paper deals with methodology of seismic design and design considerations of connections for the large panel structures. Also addressed in this paper are studies needed to develop proper seismic design procedures of precast concrete buildings.

  • PDF

Seismic performance comparison of existing public facilities strengthened with RC jacketing and steel bracing

  • Zu Irfan;Abdullah Abdullah;Azmeri Azmeri;Moch. Afiffuddin;Rifqi Irvansyah
    • Earthquakes and Structures
    • /
    • v.25 no.1
    • /
    • pp.43-56
    • /
    • 2023
  • Banda Aceh is one of the areas that sustains the most damage during a natural disaster because it contains so many houses, office buildings, public facilities, and schools. Public structures in coastal areas are highly susceptible to earthquakes, resulting in high casualties and property damage. Several public structures were reconstructed during the reconstruction and rehabilitation period. Because this building is located in an area with a high risk of earthquakes, its capacity must be analyzed initially. Additionally, history indicates that Aceh Province has been struck by numerous earthquakes, including the largest ever recorded in 1983 and the most recent earthquake with a magnitude of 9.3 SR on December 26, 2004. The city of Banda Aceh was devastated by this earthquake, which was followed by a tsunami. The possibility of a large earthquake in Banda Aceh City necessitates that the structures constructed there be resistant to seismic risk. This study's objective was to evaluate the seismic performance of the existing building by applying the method of strengthening the structure in the form of jacketing columns and the addition of steel bracing in order to estimate the performance of the structure using multiple ground motions. Therefore, several public buildings must be analyzed to determine the optimal seismic retrofitting technique.

A Study on Structural reinforcement suggestions for improvement of Seismic Performance of Masonry Buildings in rural areas (농촌지역의 조적조 건축물의 내진성능 개선을 위한 구조적 보강법 제안에 관한 연구)

  • Lee, Deog-Yong;Kim, Il-Jung
    • Journal of the Korean Institute of Rural Architecture
    • /
    • v.15 no.4
    • /
    • pp.51-58
    • /
    • 2013
  • This study Masonry Buildings in rural areas, due to the lateral load resistance for seismic reinforcement method is proposed. Some of the proposed methods for reinforcement directly through finite element analysis to evaluate the change in frequency. The results for the following: This paper has the object of investigating natural frequencies of opening thick plates on Pasternak foundation by means of finite element method and providing Kinematic design data for mat of building structures. In this paper, vibration analysis of rectangular opening thick plate is done by use of Serendipity finite element with 8 nodes by considering shearing strain of plate. It is shown that natrural frequencies depend on not only Winkler foundation parameter but also shear foundation parameter, opening position.

Progress of Applications and Studies on Earthquake Resistance Design of Bridges in Korea

  • Ha, Dong-Ho;Koh, Hyun-Moo;Ok, Seung-Yong;Lee, Sun-Young
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.11 no.4
    • /
    • pp.33-42
    • /
    • 2007
  • This paper describes the state-of-the art research activities on seismic isolation systems for improving the seismic capacities of the bridges in Korea. Though Korea is located in a region of low-to-moderate seismicity, the construction of seismic isolation systems has increased rapidly. The application of seismic isolation system has become popular worldwide because of its stable behavior and economical construction especially for bridge structures. Since optimal reliability level of isolated bridges can be determined as the one that provides the highest net life-cycle benefit to society, or the minimum Life-Cycle Cost (LCC), an optimal design procedure based on minimum LCC concept is more expedient for the design of seismically isolated bridges in areas of low-to-moderate seismicty. To verify the adequacy of the new design concept based on the LCC minimization, experimental studies on seismically isolated bridge are introduced as well, which include pseudo-dynamic test of scaled pier and dynamic field test of full-scale. With the application of seismic isolation systems, many kinds of dampers to improve the seismic capacity of structure are also applied not only to new bridges but also to existing bridges.

Comparison of loads in Turkish earthquake code with those computed statistically

  • Firat, Fatih K.;Yucemen, M. Semih
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.977-994
    • /
    • 2015
  • In this study, earthquake loads are investigated statistically and compared with the nominal earthquake loads calculated according to the Turkish Earthquake Code, namely: "Specifications for Structures to be Built in Earthquake Areas". For this purpose, the "actual" mean load values estimated from statistical methods and the nominal load values computed according the Seismic Code are compared, with respect to some variations in the basic parameters, such as the importance factor, building height, site coefficient, seismic zone and seismic load reduction factor. In addition to the data compiled from different regions of Turkey, the published data and information in the foreign literature are also used in the determination of the earthquake load statistics. Although the dead and live loads acting on a structure are independent of the geographical location of the structure, environmental loads, such as earthquake loads are highly dependent on the location of the structure. Accordingly, for the assessment of statistical parameters associated with earthquake loads, twelve different locations which can represent the different seismic zones of Turkey as accurately as possible are chosen. As a result of the code calibration procedure considered in this study, it is observed that the load values obtained from the Turkish Seismic Code may overestimate or underestimate the actual seismic loads in some of the seismic zones.