• Title/Summary/Keyword: seismic areas

Search Result 277, Processing Time 0.027 seconds

Efficiency of stiffening plates in fabricated concrete-filled tubes under monotonic compression

  • Albareda-Valls, Albert;Carreras, Jordi Maristany
    • Steel and Composite Structures
    • /
    • v.18 no.4
    • /
    • pp.1023-1044
    • /
    • 2015
  • Concrete-filled tubes (CFT), formed by an outer steel tube filled with plain or reinforced concrete inside, have been increasingly used these recent decades as columns or beam-columns, especially for tall buildings in seismic areas due to their excellent structural response. This improved behavior is derived from the effect of confinement provided by the tube, since the compressive strength of concrete increases when being subjected to hydrostatic pressure. In circular CFTs under compression, the whole tube is uniformly tensioned due to the radial expansion of concrete. Contrarily, in rectangular and square-shaped CFTs, the lateral flanges become subjected to in-plane bending derived from this volumetric expansion, and this fact implies a reduction of the confinement effect of the core. This study presents a numerical analysis of different configurations of CFT stub columns with inner stiffening plates, limited to the study of the influence of these plates on the compressive behavior without eccentricity. The final purpose is to evaluate the efficiency in terms of strength and ductility of introducing stiffeners into circular and square CFT sections under large deformation axial loading.

Compressive strength prediction by ANN formulation approach for CFRP confined concrete cylinders

  • Fathi, Mojtaba;Jalal, Mostafa;Rostami, Soghra
    • Earthquakes and Structures
    • /
    • v.8 no.5
    • /
    • pp.1171-1190
    • /
    • 2015
  • Enhancement of strength and ductility is the main reason for the extensive use of FRP jackets to provide external confinement to reinforced concrete columns especially in seismic areas. Therefore, numerous researches have been carried out in order to provide a better description of the behavior of FRP-confined concrete for practical design purposes. This study presents a new approach to obtain strength enhancement of CFRP (carbon fiber reinforced polymer) confined concrete cylinders by applying artificial neural networks (ANNs). The proposed ANN model is based on experimental results collected from literature. It represents the ultimate strength of concrete cylinders after CFRP confinement which is also given in explicit form in terms of geometrical and mechanical parameters. The accuracy of the proposed ANN model is quite satisfactory when compared to experimental results. Moreover, the results of the proposed ANN model are compared with five important theoretical models proposed by researchers so far and considered to be in good agreement.

Self compacting reinforced concrete beams strengthened with natural fiber under cyclic loading

  • Prasad, M.L.V;saha, Prasenjit;Kumar, P.R.
    • Computers and Concrete
    • /
    • v.17 no.5
    • /
    • pp.597-612
    • /
    • 2016
  • The present work focuses on the use of coconut fiber in self compacting concrete. Self-Compacting Concrete (SCC) is a highly flowable, stable concrete which flows readily into place, filling formwork without any consolidation and without undergoing any significant segregation. Use of fibers in SCC bridge the cracks and enhance the performance of concrete by not allowing cracks to propagate. They contribute to an increased energy absorption compared to plain concrete. Coconut fiber has the highest toughness among all natural fibers. It is known that structures in the seismic prone areas are always under the influence of cyclic loading. To justify the importance of strengthening SCC beams with coir fiber, the present work has been undertaken. A comparison is made between cyclic and static loading of coconut fiber reinforced self compacting concrete (FRSCC) members. Using the test data obtained from the experiment, hysteresis loops were drawn and comparison of envelope curve, energy dissipation, stiffness degradation were made and important conclusions were draw to justify the use of coconut fiber in SCC.

Structural Performance Evaluation of Repaired Structural Walls (보수된 전단벽의 강도 및 변형능력 회복 여부에 관한 연구)

  • 유승욱;한상환;이리형
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.525-528
    • /
    • 1999
  • Structural walls have been favored for the design of reinforced concrete buildings in seismic zone areas because they provide an efficient bracing system and offer great potential for lateral load resistance and drift control. Loads on structures due to earthquakes are not unlikely to reach, if not exceed, the design load levels. Hence, structural damage to walls is inevitable, and it is necessary to repair this damaged walls. Yet, information on repair method and data related to the strength and deformation characteristics of repaired walls is limited. In this study, specimens which have their aspect ratios of about 1 to 3 will be repaired. For the repairing the damaged walls, new concrete and new reinforcing bar are replaced with cracked concrete and the buckled reinforcing bar, respectively. The objective of this study is to evaluate the performance of the repaired structural walls in the capacity of strength, stiffness, and maximum deformation comparing with the undamaged walls.

  • PDF

A Study on the Role of Communication in Disaster Management in Modern Societies (현대사회에서 재난관리시 통신의 역할에 관한 연구)

  • Shin, Hyun-Shik
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.14 no.1
    • /
    • pp.55-64
    • /
    • 2008
  • In these days, not only many peoples were killed or wounded by seismic sea waves in Indonesia, but also our country is influenced by disasters such as tsunami and earthquake happened in sea areas adjacent to japan. The precaution against disaster and the rapid communication of disaster informations have become important. In order to minimize and prevent citizens' properties and lives from the loss or the damage by natural calamities suas storms, earthquakes and typhoons, the establishment of communication network for rapid information transmission and the development of system for preventing citizens from disasters should be performed.

  • PDF

Design and Applications of Buckling-Restrained Braces

  • Watanabe, Atsushi
    • International Journal of High-Rise Buildings
    • /
    • v.7 no.3
    • /
    • pp.215-221
    • /
    • 2018
  • Buckling-Restrained Braces (BRBs) have been widely applied to tall buildings in seismic areas in the world. In this paper the author summarizes representative types of BRB compositions and shows two cases of special applications of BRBs. In the first case, BRB diagonals for tall building were used to provide stable cyclic nonlinear hysteresis and also used to limit forces generated at columns, connections and walls. The top outriggers are pre-loaded by jacks to resolve long-term differential shortenings between the concrete core wall and concrete-filled steel box columns. The second case is the retrofit work for a communication tower by replacing the insufficiently strong members with BRBs in Japan.

Construction failures of masonry and adobe buildings during the 2011 Van earthquakes in Turkey

  • Sayin, Erkut;Yon, Burak;Calayir, Yusuf;Gor, Mesut
    • Structural Engineering and Mechanics
    • /
    • v.51 no.3
    • /
    • pp.503-518
    • /
    • 2014
  • On October 23, 2011, an earthquake of magnitude 7.0 struck Van, Turkey. This powerful earthquake caused the deaths of 604 people, more than 2,000 injuries, and a considerable loss of property. After this devastating earthquake, on November 9, 2011, another earthquake of magnitude 5.7 occurred. This moderate earthquake caused the deaths of 40 people. Partial and total collapse of the masonry and adobe buildings occurred in the rural areas of Van. In this paper, the acceleration records and response spectrums of the earthquakes were given and the structural deficiencies and reasons of the failures of the rural buildings were evaluated according to the Turkish Seismic Code. The observed failures showed that low quality of structural materials, poor workmanship, lack of engineering services and insufficient detailing of the structural elements are the main reasons of damages.

A Study on Dynamic Response Analysis of High Structure under Earthquake Load (지진하중을 받는 고층건물의 동적응답 해석에 관한 연구)

  • 배동명;신창혁
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.4
    • /
    • pp.337-346
    • /
    • 2000
  • Earthquake is a natural disaster accompanied by damage of human and properties caused by the ground motion, crustal movements, faults as well as tidal wave. The earthquake is known to occur mostly in earthquake-prone areas and the Korean Peninsula is known to be relatively safe in terms of geological characteristics. In order to withstand on severe environmental dynamic random load such as an earthquake, the large structure need to be designed to withstand the anticipated seismic tremor. The seismetic design is essential for building structures, bridges, and large structures which is handles explosive gases. Thus, the necessity of earthquake resistant analysis for large structure is growing and the capability of dynamic analysis should be obtained. In this thesis, dynamic responses of a high building(height 60m, width 18) which subjected to random earthquake load are presented which responses are derived using dynamic analysis methods such as response spectrum analysis, mode superposition and direct integration. Each results are also compared to review the merit of each methods.

  • PDF

Case histories of geotechnical survey for civil construction in rural sites (농촌지역 토목공사를 위한 지반조사 사례)

  • Kwon, Hyoung-Seok;Oh, Se-Young;Kim, Ki-Seog
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 2000.09a
    • /
    • pp.87-111
    • /
    • 2000
  • In this study, we describe the principle and result of geophysical techniques which are widely used in geotechnical survey. Also we discuss two case histories. One is discrimination of limestone cavity areas by resistivity, seismic tomography, televiewer, well logging, and the other is discrimination of coal by resistivity, electromagnetic method, resistivity tomography.

  • PDF

Earthquake performance of FRP retrofitting of short columns around band-type windows

  • Kocak, Ali
    • Structural Engineering and Mechanics
    • /
    • v.53 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • Due to design codes and regulations and the variety of building plans in Turkey, it is very often seen that band-type windows are left for ventilation and lightening of the basements of buildings which are used for various purposes such as workplaces and storage. Therefore when the necessary support measures cannot be given, short columns are subjected to very high shear forces and so damage occurs. One of the precautions to avoid the damage of short column mechanisms in buildings where band-type windows are in the basement is to strengthen the short columns with fiber reinforced polymer (FRP). In this study, the effect of the FRP retrofitting process of the short columns around band-windowed structures, which are found especially in basement areas, is analyzed in accordance with Turkish Seismic Code 2007 (TSC 2007). Three different models which are bare frame, frame with short columns and retrofitted short columns with FRP, are created and analyzed according to TSC 2007 performance analysis methods to understand the effects of band windows in basements and the effect of FRP retrofitting.