• Title/Summary/Keyword: seismic analysis methods

Search Result 567, Processing Time 0.025 seconds

Suggestion of Additional Criteria for Site Categorization in Korea by Quantifying Regional Specific Characteristics on Seismic Response (지역고유 지진응답 특성 정량화를 통한 국내 부지 분류 기준의 추가 반영 제안)

  • Sun, Chang-Guk
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.3
    • /
    • pp.203-218
    • /
    • 2010
  • The site categorization and corresponding site amplification factors in the current Korean seismic design guideline are based on provisions for the western United States (US), although the site effects resulting in the amplification of earthquake ground motions are directly dependent on the regional and local site characteristic conditions. In these seismic codes, two amplification factors called site coefficients, $F_a$ and $F_v$, for the short-period band and midperiod band, respectively, are listed according to a criterion, mean shear wave velocity ($V_S$) to a depth of 30 m, into five classes composed of A to E. To suggest a site classification system reflecting Korean site conditions, in this study, systematic site characterization was carried out at four regional areas, Gyeongju, Hongsung, Haemi and Sacheon, to obtain the $V_S$ profiles from surface to bedrock in field and the non-linear soil properties in laboratory. The soil deposits in Korea, which were shallower and stiffer than those in the western US, were examined, and thus the site period in Korea was distributed in the low and narrow band comparing with those in western US. Based on the geotechnical characteristic properties obtained in the field and laboratory, various site-specific seismic response analyses were conducted for total 75 sites by adopting both equivalent-linear and non-linear methods. The analysis results showed that the site coefficients specified in the current Korean provision underestimate the ground motion in the short-period range and overestimate in the mid-period range. These differences can be explained by the differences in the local site characteristics including the depth to bedrock between Korea and western US. Based on the analysis results in this study and the prior research results for the Korean peninsula, new site classification system was developed by introducing the site period as representative criterion and the mean $V_S$ to a depth of shallower than 30 m as additional criterion, to reliably determine the ground motions and the corresponding design spectra taking into account the regional site characteristics in Korea.

Application of Deconvolution Methods to Improve Seismic Resolution and Recognition of Sedimentary Facies Containing Gas Hydrates (동해 가스하이드레이트 퇴적상 해석 및 분해능 향상을 위한 디컨볼루션 연구)

  • Yi, Bo-Yeon;Lee, Gwang-Hoon;Kim, Han-Joon;Jeong, Gap-Sik;Yoo, Dong-Geun;Ryu, Byoung-Jae;Kang, Nyeon-Keon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.4
    • /
    • pp.323-329
    • /
    • 2010
  • Three deconvolution methods were applied to stacked seismic data obtained to investigate gas-hydrates in the Ulleung Basin, East Sea: (1) minimum-phase spiking deconvolution, (2) minimum-phase spiking deconvolution using an averaged wavelet from all traces, and (3) deterministic deconvolution using a wavelet with phases computed from well-logs. We analyzed the resolving property of these methods for lithological boundaries. The first deconvolution method increases temporal resolution but decreases lateral continuity. The second method shows, in an overall sense, similar results to the spiking deconvolution using a minimum phase wavelet for each trace; however, it results in a more consistent and continuous bottom-simulating reflector (BSR) and better resolved sub-BSR reflectors. The results from the third method reveal more detailed internal structures of debris-flow deposits and increased continuity of reflectors; in addition, the seafloor reflection and the BSR appear to have changed to a zero-phase waveform. These properties help more precisely estimate the distribution and reserves of gas hydrates in the exploration area by improving analysis of facies and amplitude of the BSR.

The Seismic Response Evaluation of Shear Buildings by Various Approximate Nonlinear Methods (비선형 약산법들에 의한 전단형 건물의 지진응답평가)

  • Kim, Jae-Ung;Kang, Pyeong-Doo;Jun, Dae-Han
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.9 no.5 s.45
    • /
    • pp.75-86
    • /
    • 2005
  • In performance-based design methods, it is clear that the evaluation of the nonlinear response is required. Analysis methods available to the design engineer today are nonlinear time history analyses, or monotonic static nonlinear analyses, or equivalent static analyses with simulated inelastic influences. The nonlinear time analysis is the most accurate method in computing the nonlinear response of structures, but it is time-consuming and necessitate more efforts. Some codes proposed the capacity spectrum method based on the nonlinear static analysis to determine earthquake-induced demand. The nonlinear direct spectrum method is proposed and studied to evaluate nonlinear response of structures, without iterative computations, given by the structural linear vibration period and yield strength from pushover analysis. The purpose of this paper is to compare the accuracy and the reliability of approximate nonlinear methods with respect to shear buildings and various earthquakes. The conclusions of this study are summarized as follows: 1) Linear capacity spectrum method may fail to find a convergent answer or make a divergence. Even if a convergent answer is found, it has a large error in some cases and the error varies greatly depending on earthquakes. 2) Although nonlinear capacity spectrum method need much less calculation than capacity spectrum method and find an answer in any case, it may be difficult to obtain an accurate answer and generally large error occurs. 3) The nonlinear direct spectrum method is thought to have good applicability because it produce relatively correct answer than other methods directly from pushover curves and nonlinear response spectrums without additional and iterative calculations.

AVO analysis using crossplot and amplitude polynomial methods for characterisation of hydrocarbon reservoirs (탄화수소 부존구조 평가를 위한 교차출력과 진폭다항식을 이용한 AVO 분석)

  • Kim, Ji-Soo;Kim, Won-Ki;Ha, Hee-Sang;Kim, Sung-Soo
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.25-41
    • /
    • 2011
  • AVO analysis was conducted on hydrocarbon-bearing structures by applying the crossplot and offset-coordinate amplitude polynomial techniques. To evaluate the applicability of the AVO analysis, it was conducted on synthetic data that were generated with an anticline model, and field data from the hydrocarbon-bearing Colony Sand bed in Canada. Analysis of synthetic data from the anticline model demonstrates that the crossplot method yields zero-offset reflection amplitude and amplitude variation with negative values for the upper interface of the hydrocarbon-bearing layer. The crossplot values are clustered in the third quadrant. The results of AVO analysis based on the coefficients of the amplitude polynomial are similar to those from the crossplots. These well correlated results of AVO analysis on field and synthetic data suggest that both methods successfully investigate the characteristics of the reflections from the upper interface of a hydrocarbon-bearing layer. Analysis based on the incident-angle equation facilitates the application of various interpretation methods. However, it requires the conversion of seismic data to an incident angle gather. By contrast, analysis using coefficients of the amplitude polynomial is cost-effective because it allows examining amplitude variation with offset without involving the conversion process. However, it warrants further investigation into versatile application. The two different techniques can be complement each other effectively as AVO-analysis tools for the detection of hydrocarbon reservoirs.

Practical Numerical Model for Wave Propagation and Fluid-Structure Interaction in Infinite Fluid (무한 유체 영역에서의 파전파 해석 및 유체-구조물 상호작용 해석을 위한 실용적 수치 모형)

  • Cho, Jeong-Rae;Han, Seong-Wook;Lee, Jin Ho
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.34 no.6
    • /
    • pp.427-435
    • /
    • 2021
  • An analysis considering the fluid-structure interaction is required to strictly evaluate the seismic behavior of facilities such as, environmental facilities and dams, that store fluids. Specifically, in the case of an infinite domain in the upstream direction, such as a dam-reservoir system, this should be carefully considered. In this study, we proposed a practical numerical model for both wave propagation and fluid-structure interaction analyses of an infinite domain, for a system with a semi-infinite domain such as a dam-reservoir system. This method was applicable to the time domain, and enabled accurate boundary analysis. For an infinite fluid domain, a small number of mid-point integrated acoustic finite elements were applied instead of a general acoustic finite element, and a viscous boundary was imposed on the outermost boundary. The validity and accuracy of the proposed method were secured by comparing analytic solutions of a reservoir having infinite domain, with the parametric analysis results, for the number of elements and the size of the modeling region. Furthermore, the proposed method was compared with other fluid-structure interaction methods using additional mass.

Introduction to Useful Attributes for the Interpretation of GPR Data and an Analysis on Past Cases (GPR 자료 해석에 유용한 속성들 소개 및 적용 사례 분석)

  • Yu, Huieun;Joung, In Seok;Lim, Bosung;Nam, Myung Jin
    • Geophysics and Geophysical Exploration
    • /
    • v.24 no.3
    • /
    • pp.113-130
    • /
    • 2021
  • Recently, ground-penetrating radar (GPR) surveys have been actively employed to obtain a large amount of data on occurrences such as ground subsidence and road safety. However, considering the cost and time efficiency, more intuitive and accurate interpretation methods are required, as interpreting a whole survey data set is a cost-intensive process. For this purpose, GPR data can be subjected to attribute analysis, which allows quantitative interpretation. Among the seismic attributes that have been widely used in the field of exploration, complex trace analysis and similarity are the most suitable methods for analyzing GPR data. Further, recently proposed attributes such as edge detecting and texture attributes are also effective for GPR data analysis because of the advances in image processing. In this paper, as a reference for research on the attribute analysis of GPR data, we introduce the useful attributes for GPR data and describe their concepts. Further, we present an analysis of the interpretation methods based on the attribute analysis and past cases.

Stratigraphy and Paleoenvironment of Domi-1 and Sora-1 Wells, Domi Basin (도미분지 도미-1, 소라-1공의 층서와 고환경)

  • Yun, Hye-Su;Byun, Hyun-Suk;Oh, Jin-Yong;Park, Myong-Ho;Lee, Min-Woo
    • Economic and Environmental Geology
    • /
    • v.45 no.4
    • /
    • pp.407-429
    • /
    • 2012
  • There has been much debates on the geologic age of the sediments of the Domi Basin, since age results varied after research methods and fossil groups. This study carried out palynological analysis and seismic interpretation to establish a stratigraphy and environmental reconstruction mainly based on fossil dinoflagellates and Seismic data from the Domi-1 and Sora-1 wells. The dinocyst assemblages found enabled zonation of the well sediment sequence resulting in 4 ecozones. Index fossils among dinocysts and palynomorphic substances indicate geologic age of the well ranges from Eocene to Pleistocene, and paleoenvironment varies from freshwater to inner-neritic marine. The fossil association also suggests strong relationship to Japanese Tertiary basins in Kyushu area in terms of stratigraphy and basin developmental history.

An Analysis on Applicability of Geophysical Exploration Methods to Monitoring Polymer-flooding (물리탐사 기법들의 화학공법 모니터링 적용성 분석)

  • Cheon, Seiwook;Park, Chanho;Ku, Bonjin;Nam, Myung Jin;Son, Jeong-Sul
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.3
    • /
    • pp.143-153
    • /
    • 2015
  • Polymer flooding for enhancing hydrocarbon production injects into a reservoir polymer solution that is viscous. It is very important to monitor the behavior pattern of the polymer solution in order to evaluate the effectiveness of polymer flooding. To monitor the distribution of polymer solution and thus fluid substitution within the reservoir, we first construct seismic and resistivity rock physics models (RPMs), which are functions of reservoir parameters such as rocks and type of fluid, fluid saturation. For the seismic and resistivity RPMs, responses of seismic and electromagnetic (EM) tomography are numerically simulated as polymer injection, using two dimensional (2D) staggered-grid finite difference elastic modeling and 2.5D finite element EM modeling algorithms, respectively. In constructing RPM for EM tomography, three different reservoir rocks are considered: clean-sand, dispersed shale-sand, and sand-shale lamination rocks. The polymer solution is assumed to have 2 wt% of polymer as normally generated, while water is freshwater or saltwater. Further, neutron logging is also considered to check its sensitivity to polymer flooding. The techniques discussed in the paper are important in monitoring not only hydrocarbon but also geothermal reservoirs.

Seismic structural demands and inelastic deformation ratios: a theoretical approach

  • Chikh, Benazouz;Mebarki, Ahmed;Laouami, Nacer;Leblouba, Moussa;Mehani, Youcef;Hadid, Mohamed;Kibboua, Abderrahmane;Benouar, Djilali
    • Earthquakes and Structures
    • /
    • v.12 no.4
    • /
    • pp.397-407
    • /
    • 2017
  • To estimate the structural seismic demand, some methods are based on an equivalent linear system such as the Capacity Spectrum Method, the N2 method and the Equivalent Linearization method. Another category, widely investigated, is based on displacement correction such as the Displacement Coefficient Method and the Coefficient Method. Its basic concept consists in converting the elastic linear displacement of an equivalent Single Degree of Freedom system (SDOF) into a corresponding inelastic displacement. It relies on adequate modifying or reduction coefficient such as the inelastic deformation ratio which is usually developed for systems with known ductility factors ($C_{\mu}$) and ($C_R$) for known yield-strength reduction factor. The present paper proposes a rational approach which estimates this inelastic deformation ratio for SDOF bilinear systems by rigorous nonlinear analysis. It proposes a new inelastic deformation ratio which unifies and combines both $C_{\mu}$ and $C_R$ effects. It is defined by the ratio between the inelastic and elastic maximum lateral displacement demands. Three options are investigated in order to express the inelastic response spectra in terms of: ductility demand, yield strength reduction factor, and inelastic deformation ratio which depends on the period, the post-to-preyield stiffness ratio, the yield strength and the peak ground acceleration. This new inelastic deformation ratio ($C_{\eta}$) is describes the response spectra and is related to the capacity curve (pushover curve): normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), natural period (T), peak ductility factor (${\mu}$), and the yield strength reduction factor ($R_y$). For illustrative purposes, instantaneous ductility demand and yield strength reduction factor for a SDOF system subject to various recorded motions (El-Centro 1940 (N/S), Boumerdes: Algeria 2003). The method accuracy is investigated and compared to classical formulations, for various hysteretic models and values of the normalized yield strength coefficient (${\eta}$), post-to-preyield stiffness ratio (${\alpha}$), and natural period (T). Though the ductility demand and yield strength reduction factor differ greatly for some given T and ${\eta}$ ranges, they remain take close when ${\eta}>1$, whereas they are equal to 1 for periods $T{\geq}1s$.

Proper Orthogonal Decomposition Based Intrusive Reduced Order Models to Accelerate Computational Speed of Dynamic Analyses of Structures Using Explicit Time Integration Methods (외연적 시간적분법 활용 동적 구조해석 속도 향상을 위한 적합직교분해 기반 침습적 차수축소모델 적용 연구)

  • Young Kwang Hwang;Myungil Kim
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.1
    • /
    • pp.9-16
    • /
    • 2024
  • Using the proper orthogonal decomposition (POD) based intrusive reduced order model (ROM), the total degrees of freedom of the structural system can be significantly reduced and the critical time step satisfying the conditional stability increases in the explicit time integrations. In this study, therefore, the changes in the critical time step in the explicit time integrations are investigated using both the POD-ROM and Voronoi-cell lattice model (VCLM). The snapshot matrix is composed of the data from the structural response under the arbitrary dynamic loads such as seismic excitation, from which the POD-ROM is constructed and the predictive capability is validated. The simulated results show that the significant reduction in the computational time can be achieved using the POD-ROM with sufficiently ensuring the numerical accuracy in the seismic analyses. In addition, the validations show that the POD based intrusive ROM is compatible with the Voronoi-cell lattice based explicit dynamic analyses. In the future study, the research results will be utilized as an elemental technology for the developments of the real-time predictive models or monitoring system involving the high-fidelity simulations of structural dynamics.