• Title/Summary/Keyword: seismic analysis methods

Search Result 567, Processing Time 0.023 seconds

In-Cabinet Response Spectrum Generation Using Frequency Domain Analysis Method (진동수영역해석법을 이용한 캐비닛내부응답스펙트럼 생성 기법)

  • Cho, Sung Gook;So, Gihwan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.24 no.2
    • /
    • pp.103-110
    • /
    • 2020
  • Seismic qualification of instruments and devices mounted on electrical cabinets in a nuclear power plant is performed in this study by means of the in-cabinet response spectrum (ICRS). A simple method and two rigorous methods are proposed in the EPRI NP-7146-SL guidelines for generating the ICRS. The simple method of EPRI can give unrealistic spectra that are excessively conservative in many cases. In the past, the time domain analysis (TDA) methods have been mostly used to analyze a structure. However, the TDA requires the generation of an artificial earthquake input motion compatible to the target response spectrum. The process of generating an artificial earthquake may involve a great deal of uncertainty. In addition, many time history analyses should be performed to increase the accuracy of the results. This study developed a numerical analysis program for generating the ICRS by frequency domain analysis (FDA) method. The developed program was validated by the numerical study. The ICRS calculated by FDA thoroughly matched with those obtained from TDA. This study then confirms that the method it proposes can simply and efficiently generate the ICRS compared to the time domain method.

MiSA (Method of Integrated Spectral Analysis) to Evaluate Structural Integrity of Tunnel Concrete Lining (터널 콘크리트 라이닝의 구조적 특성평가를 위한 탄성파 기법, MiSA의 개발)

  • 김기봉;추진호;조성호;조미라
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.49-56
    • /
    • 2001
  • The techniques to make assessment of the structural integrity of underground structures include Infrared thermagraphy, GPR using the reflection of the electromagnetic wave, ultrasonic test, seismic methods using the propagation of elastic wave, and etc These methods have pros and cons in the assessment of the structural integrity in the complex environment of the underground structure, so that a single method alone is not enough to evaluate parameters required for the assessment. In this study, a new seismic method was proposed to improve the existing methods and to provide an additional information like stiffness of concrete. The proposed method combines the advantages of the modified impact-echo test and the SASW method. To verify the validity of the proposed method, a large scale model of a tunnel concrete liner was built and the proposed method was applied to the center of the model and also to the corner of the model which has several distinct reflection boundaries.

  • PDF

Seismic Performance Evaluation of Reinforced Concrete Shear Wall Systems Designed with Special and Semi-Special Seismic Details (특수 및 준특수 상세에 따른 철근콘크리트 전단벽의 내진성능평가)

  • Oh, Hae Cheol;Lee, Kihak;Chun, Young Soo;Kim, Tae Wan
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2014
  • This research presents the nonlinear analysis model for reinforced concrete shear wall systems with special boundary elements as proposed by the Korean Building Code (KBC, 2009). In order to verify the analysis model, analytical results were compared with the experimental results obtained from previous studies. Established analytical model was used to perform nonlinear static and dynamic analyses. Analytical results showed that the semi-special shear wall improved significantly the performance in terms of ductility and energy dissipation as expected based on previous test results. Furthermore, nonlinear incremental dynamic analysis was performed using 20 ground motions. Based on computer analytical results, the ordinary shear wall, special shear wall and newly proposed semi-special shear wall systems were evaluated based on the methods in FEMA P965. The results based on the probabilistic approaches accounting for inherent uncertainties showed that the semi-special shear wall systems provide a high capacity/demand (ACMR) ratio owing to their details, which provide enough capacity to sustain large inelastic deformations.

Development and Verification of Approximate Methods for In-Structure Response Spectrum (ISRS) Scaling (구조물내응답스펙트럼 스케일링 근사 방법 개발 및 검증)

  • Shinyoung Kwag;Chaeyeon Go;Seunghyun Eem;Jaewook Jung;In-Kil Choi
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.37 no.2
    • /
    • pp.111-118
    • /
    • 2024
  • An in-structure response spectrum (ISRS) is required to evaluate the seismic performance of a nuclear power plant (NPP). However, when a new ISRS is required because of the change in the unique spectrum of an NPP site, considerable costs such as seismic response re-analyses are incurred. This study provides several approaches to generate approximate methods for ISRS scaling, which do not require seismic response re-analyses. The ISRSs derived using these approaches are compared to the original ISRS. The effect of the ISRS of the approximate method on the seismic response and seismic performance of one of the main systems of an NPP is analyzed. The ISRS scaling approximation methods presented in this study produce ISRSs that are relatively similar at low frequencies; however, the similarity decreases at high frequencies. The effect of the ISRS scaling approximate method on the calculation accuracy of the seismic response/seismic performance of the system is determined according to the degree of similarity in the calculation of the system's essential mode responses for the method.

Assessment of the Seismic Capacity of Structure Using Pseudodynamic Test (유사동적 실험법을 이용한 구조물의 내진 성능 평가)

  • 김대곤;김대영;안재현;박칠림
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.1 no.2
    • /
    • pp.49-57
    • /
    • 1997
  • It is necessary to conduct researches about seismic design and analysis to protect various structures from earthquakes which are one of the most destructive natural disaster to human civilization. To assess the seismic capacity of structure, not only analytical but also experimental researches are important. Currently, pseudodynamic test known as computer-actuator on-line test is one of the available test methods to assess seismic capacity of structure without using shaking table. In this paper seismic capacity of simple one-degree of freedom structure was estimated by pseudodynamic test. Good agreement between the experimental and analytical results was obtained. Better results would be obtained when more sophisticated measuring and controlling instruments are available.

  • PDF

Review of seismic studies of liquid storage tanks

  • Zhao, Ming;Zhou, Junwen
    • Structural Engineering and Mechanics
    • /
    • v.65 no.5
    • /
    • pp.557-572
    • /
    • 2018
  • The academic research works about liquid storage tanks are reviewed for the purpose of providing valuable reference to the engineering practice on their aseismic design. A summary of the performance of tanks during past earthquakes is described in this paper. Next, the seismic response of tanks under unidirectional earthquake is reported, supplemented with the dynamic response under multidirectional motions. Then, researches on the influence of soil-structure interaction are brought out to help modify the seismic design approach of tanks in different areas with variable properties of soils. Afterwards, base isolation systems are reported to demonstrate their effectiveness for the earthquake-resistant design of liquid storage tanks. Further, researches about the liquid-structure interaction are reviewed with description of simplified models and numerical analytical methods, some of which consider the elastic effect of tank walls. Moreover, the liquid sloshing phenomenon on the hydrodynamic behaviors of tanks is presented by various algorithms including grid-based and meshfree method. And then the impact of baffles in changing the dynamic characteristics of the liquid-structure system is raised, which shows the energy dissipation by the vortex motion of liquid. In addition, uplifting effect is given to enhance the understanding on the capacity of unanchored tanks and some assessment of their development. At last, the concluding remarks and the aspects of extended research in the field of liquid storage tanks under seismic loads are provided, emphasizing the thermal stress analysis, the replaceable system for base isolation, the liquid-solid interaction and dynamic responses with stochastic excitations.

Occurrence mechanism of recent large earthquake ground motions at nuclear power plant sites in Japan under soil-structure interaction

  • Kamagata, Shuichi;Takeqaki, Izuru
    • Earthquakes and Structures
    • /
    • v.4 no.5
    • /
    • pp.557-585
    • /
    • 2013
  • The recent huge earthquake ground motion records in Japan result in the reconsideration of seismic design forces for nuclear power stations from the view point of seismological research. In addition, the seismic design force should be defined also from the view point of structural engineering. In this paper it is shown that one of the occurrence mechanisms of such large acceleration in recent seismic records (recorded in or near massive structures and not free-field ground motions) is due to the interaction between a massive building and its surrounding soil which induces amplification of local mode in the surface soil. Furthermore on-site investigation after earthquakes in the nuclear power stations reveals some damages of soil around the building (cracks, settlement and sand boiling). The influence of plastic behavior of soil is investigated in the context of interaction between the structure and the surrounding soil. Moreover the amplification property of the surface soil is investigated from the seismic records of the Suruga-gulf earthquake in 2009 and the 2011 off the Pacific coast of Tohoku earthquake in 2011. Two methods are introduced for the analysis of the non-stationary process of ground motions. It is shown that the non-stationary Fourier spectra can detect the temporal change of frequency contents of ground motions and the displacement profile integrated from its acceleration profile is useful to evaluate the seismic behavior of the building and the surrounding soil.

Analysis on the Seismic Performance of Ceiling System in School Buildings (국내 학교시설 천장재의 내진성능 분석)

  • Park, Sung-Chul;Cho, Jin-Il;Jung, Tae-Hwan
    • The Journal of Sustainable Design and Educational Environment Research
    • /
    • v.15 no.1
    • /
    • pp.11-18
    • /
    • 2016
  • The purpose of this study is to develop the evaluation model of school facilities in terms of seismic performance during safety education in the school field. This study is composed of four stages with a view to developing user oriented evaluation models that can be utilized during earthquake safety education on ceiling system. and First stage analyze the evaluation guidelines to find evaluation methods and items. Based on the items, site survey was conducted to derive the characteristics of seismic performance of domestic school buildings in terms of ceiling system. Third stage analyzes the seismic performance of ceiling system. Final stage is to derive recommendations based on the results.

The length of plastic hinge area in the flanged reinforced concrete shear walls subjected to earthquake ground motions

  • Bafti, Farzad Ghaderi;Mortezaei, Alireza;Kheyroddin, Ali
    • Structural Engineering and Mechanics
    • /
    • v.69 no.6
    • /
    • pp.651-665
    • /
    • 2019
  • Past earthquakes have shown that appropriately designed and detailed buildings with shear walls have great performance such a way that a considerable portion of inelastic energy dissipation occurs in these structural elements. A plastic hinge is fundamentally an energy diminishing means which decrease seismic input energy through the inelastic deformation. Plastic hinge development in a RC shear wall in the areas which have plastic behavior depends on the ground motions characteristics as well as shear wall details. One of the most generally used forms of structural walls is flanged RC wall. Because of the flanges, these types of shear walls have large in-plane and out-of-plane stiffness and develop high shear stresses. Hence, the purpose of this paper is to evaluate the main characteristics of these structural components and provide a more comprehensive expression of plastic hinge length in the application of performance-based seismic design method and promote the development of seismic design codes for shear walls. In this regard, the effects of axial load level, wall height, wall web and flange length, as well as various features of earthquakes, are examined numerically by finite element methods and the outcomes are compared with consistent experimental data. Based on the results, a new expression is developed which can be utilized to determine the length of plastic hinge area in the flanged RC shear walls.

A Study on the Development of a Rapid Safety Assessment System for Buildings Using Seismic Accelerometers (지진가속도 계측기를 이용한 건축물의 긴급 안전성 평가 알고리즘 개발에 대한 연구)

  • Jeong, Seong-Hoon;Jang, Won-Seok;Park, Byung-Chul
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.24 no.6
    • /
    • pp.161-170
    • /
    • 2020
  • In this study, develop the seismic acceleration measurement data conversion and signal processing algorithms for improve the operational efficiency of the seismic acceleration measurement system installed for public facilities. Through the analysis of the seismic acceleration time history data, the evaluation methods and criteria and evaluating the safety of buildings were proposed. The system was applied to the test bed building to verify its operation and usability. It is expected to be used as a decision making support data and determining the direction and priority of disaster response in the event of an earthquake.