• 제목/요약/키워드: segment classfication

검색결과 2건 처리시간 0.019초

Spectrum 강조특성을 이용한 음성신호에서 Voicd - Unvoiced - Silence 분류 (Voiced, Unvoiced, and Silence Classification of human speech signals by enphasis characteristics of spectrum)

  • 배명수;안수길
    • 한국음향학회지
    • /
    • 제4권1호
    • /
    • pp.9-15
    • /
    • 1985
  • In this paper, we describe a new algorithm for deciding whether a given segment of a speech signal is classified as voiced speech, unvoiced speech, or silence, based on parameters made on the signal. The measured parameters for the voiced-unvoiced classfication are the areas of each Zero crossing interval, which is given by multiplication of the magnitude by the inverse zero corssing rate of speech signals. The employed parameter for the unvoiced-silence classification, also, are each of positive area summation during four milisecond interval for the high frequency emphasized speech signals.

  • PDF

고해상도 영상 및 라이다 자료를 이용한 객체 기반 건물 탐지 (Object-based classification for building detection using VHR image and Lidar data)

  • 윤여상
    • 대한원격탐사학회:학술대회논문집
    • /
    • 대한원격탐사학회 2006년도 춘계학술대회 논문집
    • /
    • pp.307-310
    • /
    • 2006
  • 고해상도(VHR, Very High Resolution) 영상은 활용에 따라 도심의 다양한 정보를 얻을 수 있는 잠재적 가치가 매우 큰 자료이다. 그러나 이러한 고해상도 영상자료는 매우 높은 공간해상력으로 인해 같은 용도의 객체 혹은 같은 객체(예, 건물)라 할지라도 다양한 분광 특성 및 형태로 표현된다. 그러므로 이러한 고해상도영상을 이용하여 효과적으로 주제도를 생성하기 위해서는 현재까지 영상분류 분야에서 주로 활용되고 있는 화소(pixel)단위 기반의 분석방법으로는 한계가 존재한다. 본 연구에서는 이러한 문제점을 보완하기 위한 방법으로 활발한 연구가 진행되고 있는 세그멘트(segment) 혹은 객체(object) 기반 분류기법을 고해상도 영상 및 라이다 자료에 적용하여 도심지역의 건물들을 추출해 보았으며, 그 활용 가능성에 대하여 판단해 보았다. 이러한 세그멘트 기법은 분류하고자 하는 객체들을 하나의 동일한 특성을 가지는 집단으로 모으는 방법을 말하는데, 이를 위해 본 연구에서는 multi-resolution image segmentation기법을 제공해주는 eCognition이라는 소프트웨어를 이용하였다.

  • PDF