• Title/Summary/Keyword: segment based classification

Search Result 124, Processing Time 0.024 seconds

Voiced, Unvoiced, and Silence Classification of human speech signals by enphasis characteristics of spectrum (Spectrum 강조특성을 이용한 음성신호에서 Voicd - Unvoiced - Silence 분류)

  • 배명수;안수길
    • The Journal of the Acoustical Society of Korea
    • /
    • v.4 no.1
    • /
    • pp.9-15
    • /
    • 1985
  • In this paper, we describe a new algorithm for deciding whether a given segment of a speech signal is classified as voiced speech, unvoiced speech, or silence, based on parameters made on the signal. The measured parameters for the voiced-unvoiced classfication are the areas of each Zero crossing interval, which is given by multiplication of the magnitude by the inverse zero corssing rate of speech signals. The employed parameter for the unvoiced-silence classification, also, are each of positive area summation during four milisecond interval for the high frequency emphasized speech signals.

  • PDF

Classification System of BIM based Spatial Information for the Preservation of Architectural Heritage - Focused on the Wooden Structure - (건축문화재의 보존관리를 위한 BIM 기반 공간정보 분류체계 구성개념 - 목조를 중심으로 -)

  • Choi, Hyun-Sang;Kim, Sung-Woo
    • Korean Institute of Interior Design Journal
    • /
    • v.24 no.1
    • /
    • pp.207-215
    • /
    • 2015
  • It seems obvious that the spatial information of existing architectural heritage will be re-structured utilizing BIM technology. In the future to be able to implement such task, a new system of classification of spatial information, which fit to the structural nature of architectural heritage is necessary. This paper intend to suggest the conceptual model that can be the base of establishing new classification system for architectural heritage. For this study we reviewed researches related to classification system of architectural heritage (CS-AH) and BIM based architectural heritage (BIM-AH), first. As a result, we found that CS-AH is focused on building elevation and type, and BIM-AH is biased on the Library and Parametric Modeling. Second, we figured out a relationship between the CS-AH and BIM-AH. From this analysis, we found that BIM-AH is biased on Library and Parametric since the building elevation and type was focused on CS-AH. This review suggests a potential of the 3D CS-AH to expand the range of research for BIM-AH. At last, we suggest the three concept of classification are: 1)horizontality-accumulation relationship, 2)structure-infill relationship, 3)segment-member relationship. These three concept, together as one system of classification, could provide useful framework of new classification system of spatial information for architectural heritage.

Log-polar Sampling based Voxel Classification for Pulmonary Nodule Detection in Lung CT scans (흉부 CT 영상에서 폐 결절 검출을 위한 Log-polar Sampling기반 Voxel Classification 방법)

  • Choi, Wook-Jin;Choi, Tae-Sun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.6 no.1
    • /
    • pp.37-44
    • /
    • 2013
  • In this paper, we propose the pulmonary nodule detection system based on voxel classification. The proposed system consists of three main steps. In the first step, we segment lung volume. In the second step, the lung structures are initially segmented. In the last step, we classify the nodules using voxel classification. To describe characteristics of each voxel, we extract the log-polar sampling based features. Support Vector Machine is applied to the extracted features to classify into nodules and non-nodules.

A Review of Postural Classification Schemes for Evaluating Postural Load - Focused on the Observational Methods (작업 자세 부하 평가를 위한 자세 분류 체계의 연구 현황 - 관측법을 중심으로)

  • 기도형
    • Journal of the Korean Society of Safety
    • /
    • v.15 no.4
    • /
    • pp.139-149
    • /
    • 2000
  • This study aims to review and assess the existing postural classification schemes used for evaluating postural loads in industry. The schemes can be classified into three categories: self-report, observational and instrument-based techniques depending upon how to record working postures. Of the three techniques, this study was mainly focused on the observational methods. The observational technique is most widely used in the industrial sites because it does not interfere with work, and is easy and simple to use and cost-effective without requiring the use of expensive equipment for estimating the angular deviation of a body segment from the neutral position. In spite of the usefulness and applicability, the techniques have some problems: 1) The existing observational techniques lack the consistency in the class limits of the motion categories in each body segment; 2) Most of them do not provide the post-analysis criteria needed to judge whether or not any posture is acceptable in view point of the postural load; and 3) They can not precisely evaluate the postural load for a given posture because the external loads and dynamic factors including acceleration, moment and force were not taken into consideration.

  • PDF

UX Methodology Study by Data Analysis Focusing on deriving persona through customer segment classification (데이터 분석을 통한 UX 방법론 연구 고객 세그먼트 분류를 통한 페르소나 도출을 중심으로)

  • Lee, Seul-Yi;Park, Do-Hyung
    • Journal of Intelligence and Information Systems
    • /
    • v.27 no.1
    • /
    • pp.151-176
    • /
    • 2021
  • As the information technology industry develops, various kinds of data are being created, and it is now essential to process them and use them in the industry. Analyzing and utilizing various digital data collected online and offline is a necessary process to provide an appropriate experience for customers in the industry. In order to create new businesses, products, and services, it is essential to use customer data collected in various ways to deeply understand potential customers' needs and analyze behavior patterns to capture hidden signals of desire. However, it is true that research using data analysis and UX methodology, which should be conducted in parallel for effective service development, is being conducted separately and that there is a lack of examples of use in the industry. In thiswork, we construct a single process by applying data analysis methods and UX methodologies. This study is important in that it is highly likely to be used because it applies methodologies that are actively used in practice. We conducted a survey on the topic to identify and cluster the associations between factors to establish customer classification and target customers. The research methods are as follows. First, we first conduct a factor, regression analysis to determine the association between factors in the happiness data survey. Groups are grouped according to the survey results and identify the relationship between 34 questions of psychological stability, family life, relational satisfaction, health, economic satisfaction, work satisfaction, daily life satisfaction, and residential environment satisfaction. Second, we classify clusters based on factors affecting happiness and extract the optimal number of clusters. Based on the results, we cross-analyzed the characteristics of each cluster. Third, forservice definition, analysis was conducted by correlating with keywords related to happiness. We leverage keyword analysis of the thumb trend to derive ideas based on the interest and associations of the keyword. We also collected approximately 11,000 news articles based on the top three keywords that are highly related to happiness, then derived issues between keywords through text mining analysis in SAS, and utilized them in defining services after ideas were conceived. Fourth, based on the characteristics identified through data analysis, we selected segmentation and targetingappropriate for service discovery. To this end, the characteristics of the factors were grouped and selected into four groups, and the profile was drawn up and the main target customers were selected. Fifth, based on the characteristics of the main target customers, interviewers were selected and the In-depthinterviews were conducted to discover the causes of happiness, causes of unhappiness, and needs for services. Sixth, we derive customer behavior patterns based on segment results and detailed interviews, and specify the objectives associated with the characteristics. Seventh, a typical persona using qualitative surveys and a persona using data were produced to analyze each characteristic and pros and cons by comparing the two personas. Existing market segmentation classifies customers based on purchasing factors, and UX methodology measures users' behavior variables to establish criteria and redefine users' classification. Utilizing these segment classification methods, applying the process of producinguser classification and persona in UX methodology will be able to utilize them as more accurate customer classification schemes. The significance of this study is summarized in two ways: First, the idea of using data to create a variety of services was linked to the UX methodology used to plan IT services by applying it in the hot topic era. Second, we further enhance user classification by applying segment analysis methods that are not currently used well in UX methodologies. To provide a consistent experience in creating a single service, from large to small, it is necessary to define customers with common goals. To this end, it is necessary to derive persona and persuade various stakeholders. Under these circumstances, designing a consistent experience from beginning to end, through fast and concrete user descriptions, would be a very effective way to produce a successful service.

Travel Time Prediction Algorithm Based on Time-varying Average Segment Velocity using $Na{\ddot{i}}ve$ Bayesian Classification ($Na{\ddot{i}}ve$ Bayesian 분류화 기법을 이용한 시간대별 평균 구간 속도 기반 주행 시간 예측 알고리즘)

  • Um, Jung-Ho;Chowdhury, Nihad Karim;Lee, Hyun-Jo;Chang, Jae-Woo;Kim, Yeon-Jung
    • Journal of Korea Spatial Information System Society
    • /
    • v.10 no.3
    • /
    • pp.31-43
    • /
    • 2008
  • Travel time prediction is an indispensable to many advanced traveler information systems(ATIS) and intelligent transportation systems(ITS). In this paper we propose a method to predict travel time using $Na{\ddot{i}}ve$ Bayesian classification method which has exhibited high accuracy and processing speed when applied to classily large amounts of data. Our proposed prediction algorithm is also scalable to road networks with arbitrary travel routes. For a given route, we consider time-varying average segment velocity to perform more accuracy of travel time prediction. We compare the proposed method with the existing prediction algorithms like link-based prediction algorithm [1] and Micro T* algorithm [2]. It is shown from the performance comparison that the proposed predictor can reduce MARE (mean absolute relative error) significantly, compared with the existing predictors.

  • PDF

A Study on Machine Learning-Based Real-Time Gesture Classification Using EMG Data (EMG 데이터를 이용한 머신러닝 기반 실시간 제스처 분류 연구)

  • Ha-Je Park;Hee-Young Yang;So-Jin Choi;Dae-Yeon Kim;Choon-Sung Nam
    • Journal of Internet Computing and Services
    • /
    • v.25 no.2
    • /
    • pp.57-67
    • /
    • 2024
  • This paper explores the potential of electromyography (EMG) as a means of gesture recognition for user input in gesture-based interaction. EMG utilizes small electrodes within muscles to detect and interpret user movements, presenting a viable input method. To classify user gestures based on EMG data, machine learning techniques are employed, necessitating the preprocessing of raw EMG data to extract relevant features. EMG characteristics can be expressed through formulas such as Integrated EMG (IEMG), Mean Absolute Value (MAV), Simple Square Integral (SSI), Variance (VAR), and Root Mean Square (RMS). Additionally, determining the suitable time for gesture classification is crucial, considering the perceptual, cognitive, and response times required for user input. To address this, segment sizes ranging from a minimum of 100ms to a maximum of 1,000ms are varied, and feature extraction is performed to identify the optimal segment size for gesture classification. Notably, data learning employs overlapped segmentation to reduce the interval between data points, thereby increasing the quantity of training data. Using this approach, the paper employs four machine learning models (KNN, SVC, RF, XGBoost) to train and evaluate the system, achieving accuracy rates exceeding 96% for all models in real-time gesture input scenarios with a maximum segment size of 200ms.

Bayesian Multiple Change-Point Estimation and Segmentation

  • Kim, Jaehee;Cheon, Sooyoung
    • Communications for Statistical Applications and Methods
    • /
    • v.20 no.6
    • /
    • pp.439-454
    • /
    • 2013
  • This study presents a Bayesian multiple change-point detection approach to segment and classify the observations that no longer come from an initial population after a certain time. Inferences are based on the multiple change-points in a sequence of random variables where the probability distribution changes. Bayesian multiple change-point estimation is classifies each observation into a segment. We use a truncated Poisson distribution for the number of change-points and conjugate prior for the exponential family distributions. The Bayesian method can lead the unsupervised classification of discrete, continuous variables and multivariate vectors based on latent class models; therefore, the solution for change-points corresponds to the stochastic partitions of observed data. We demonstrate segmentation with real data.

Suggestion of New Terminology and Classification of the Hand Techniques by Angular Momentum in the Taekwondo Poomsae

  • Yoo, Si-Hyun;Jung, Kuk-Hyun;Ryu, Ji-Seon
    • Korean Journal of Applied Biomechanics
    • /
    • v.26 no.1
    • /
    • pp.51-69
    • /
    • 2016
  • Objective: The purpose of this study is to suggest new terminology for the ninety-five hand techniques based on the significance of their angular momentum, determined by analyzing each technique's influence or impact on the compartmentalized angular momentum of the trunk, upper arm, and forearm in the Taekwondo Poomsae. Method: An athlete who won the 2014 World Taekwondo Poomsae championship was selected and agreed to participate in the data collection phase of our investigation. The video data was collected using eight infrared cameras (Oqus 300, Qualysis, Sweden) and the Qualisys Track Manager software (Qualisys, Sweden). The angular momentum of each movement was then calculated using the Matlab R2009a software (The Mathworks, Inc., USA). Results: The classification of the ninety-five hand techniques in the Taekwondo Poomsae based on the significance of each segment's momentum is as follows. Makgi (blocking) is classified into fourteen categories, jireugi (punching) is classified into three categories, chigi (hitting) was classified into six categories, palgupchigi (elbow hitting) was classified into four categories, and jjireugi (thrusting) was classified two categories. Conclusion: This study offers a new approach, based on a biomechanical method, to the classification of the hand techniques that reflect kinesthetic motions in the Taekwondo Poomsae.

Feature Based Decision Tree Model for Fault Detection and Classification of Semiconductor Process (반도체 공정의 이상 탐지와 분류를 위한 특징 기반 의사결정 트리)

  • Son, Ji-Hun;Ko, Jong-Myoung;Kim, Chang-Ouk
    • IE interfaces
    • /
    • v.22 no.2
    • /
    • pp.126-134
    • /
    • 2009
  • As product quality and yield are essential factors in semiconductor manufacturing, monitoring the main manufacturing steps is a critical task. For the purpose, FDC(Fault detection and classification) is used for diagnosing fault states in the processes by monitoring data stream collected by equipment sensors. This paper proposes an FDC model based on decision tree which provides if-then classification rules for causal analysis of the processing results. Unlike previous decision tree approaches, we reflect the structural aspect of the data stream to FDC. For this, we segment the data stream into multiple subregions, define structural features for each subregion, and select the features which have high relevance to results of the process and low redundancy to other features. As the result, we can construct simple, but highly accurate FDC model. Experiments using the data stream collected from etching process show that the proposed method is able to classify normal/abnormal states with high accuracy.