• Title/Summary/Keyword: seepage pathways

Search Result 5, Processing Time 0.02 seconds

Detection of anomalous features in an earthen dam using inversion of P-wave first-arrival times and surface-wave dispersion curves (P파 초동주시와 표면파 분산곡선 역산을 통한 흙댐의 이상대 탐지)

  • Kim, K.Y.;Jeon, K.M.;Hong, M.H.;Park, Young-Gyu
    • Geophysics and Geophysical Exploration
    • /
    • v.14 no.1
    • /
    • pp.42-49
    • /
    • 2011
  • To locate anomalous features including seepage pathways through the Daeryong earth-fill dam, P and Rayleigh waves were recorded along a 250-m profile on the crest of the dam. Seismic energy was generated using a 5-kg sledgehammer and detected by 24 4.5-Hz vertical-axis geophones installed at 3-m intervals. P-wave and apparent S-wave velocities of the reservoir dam and underlying bedrock were then inverted from first-arrival traveltimes and dispersion curves of Rayleigh waves, respectively. Apparent dynamic Poisson's ratios as high as 0.46 were obtained at the base of the dam near its north-east end, where an outlet conduit occurs, and in the clay core body near the south-west end of the profile where the dam was repeatedly grouted to abate seepage before our survey. These anomalies of higher Poisson's ratios in the upper part of clay core were also associated with effusion of grout on the downstream slope of the dam during post-survey grouting to abate leakage. Combining P-wave traveltime tomography and inversion of Rayleigh wave velocities was very effective in detecting potential pathways for seepage and previous grouted zones in this earthen dam.

Application of Geophysical Exploration Methods to Seepage Bone Investigation of Dam Structures (제방누수조사에의 물리탐사기법의 활용(쌍극자배열 전기비저항탐사와 SP탐사를 중심으로))

  • Won Jong-Geun;Song Sung-Ho
    • 한국지구물리탐사학회:학술대회논문집
    • /
    • 1999.08a
    • /
    • pp.240-257
    • /
    • 1999
  • More than 16 percent of the total 18,032 reservoirs over the country were reported to have leakage problems and need to be improved. Recently, a great deal of progress was made in geophysical survey techniques, particularly in electrical resistivity, and the techniques are used for variety of Purposes in groundwater and dam management due to its economical advantages. This document describes the re-evaluation of existing resistivity data including newly surveyed data, mapping of modeled value in 2-D analysis to locate seepage pathways, This contains also discussion results of more than eighteen years of professional experiences in the field of dam efficiency improvement. In comparison of surface resistivity data with several soil analysis data in laboratory, it is evident that the surface resistivity value shows a qualitative proportionality with the sand contents of the filling materials in earth dam. The result from the study also indicates that the SP method in subsurface investigation is effective to detect seepage in earth filled dam as well as piping through rock/earthfill dike.

  • PDF

Characteristics of Macroinvertebrates Food Webs affected by Dry Channel in an Intermittent Stream System of the Echi River in Japan

  • Shin, Hyun-Seon;Nozomi, Amahashi;Na, Young-Eun;Park, Hong-Hyun;Cho, Kwang-Jin;Seo, Ye-Ji;Osamu, Mitamura
    • Journal of Climate Change Research
    • /
    • v.6 no.3
    • /
    • pp.167-173
    • /
    • 2015
  • The purpose of study is to identify trophic pathways from organic matter to macroinvertebrates in terms of the consumer and to characterize the food webs in an intermittent stream system of the Echi River in Japan. The ${\delta}^{13}C$ values of macroinvertebrates and their potential food sources indicated the scraper (Psephenoides spp., Ecdyonurus levis) and collector-gatherer (Ephemera strigata, Paraleptonphlebia chocolata) feed on periphyton and POM (particulate organic matter) in situ. Davidius lunatus, and Hexatoma spp., which were identified as predators, may feed upon Ephemera strigata and Stenelmis larvae, respectively. At station characterized by seepage water, the ${\delta}^{15}N$ values of Ecdyonurus levis, Lymnaea auricularia, and Rhyacophila nigrocephala larva probably showed relatively lower values according to its diets. Even in homogenous species, the trophic pathways of macroinvertebrates in situ exhibited considerable variation; this reflected the trophic pathways from organic matter to the consumer depending on habitat characteristics in stream.

Geophysical study about gas hydrate formation in the Ulleung Basin, East Sea (동해 울릉분지 가스하이드레이트 형성에 관한 지구물리해석)

  • Kang, Dong-Hyo;Ryu, Byong-Jae;Yoo, Dong-Geun;Bahk, Jang-Jun;Koo, Nam-Hyung;Kim, Won-Sik
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2009.06a
    • /
    • pp.680-681
    • /
    • 2009
  • On the basis of seismic interpretation, seismic indicators of gas hydrate and associated gas such as bottom simulating reflector (BSR), acoustic blanking, column structure, gas seepage, enhanced reflection were identified in the Ulleung Basin. Fractures, faults, sandy layer could be the migration pathways transporting fluid and gas to stability zone. The formation of gas hydrate in the Ulleung Basin include: (1) nodules, veins, layers in muddy sediments and disseminated forms in sandy layer within localized column structure, (2) disseminated forms in sandy layer, and (3) disseminated forms in sandy layer just above BSR.

  • PDF

Experimental study on water exchange between crack and clay matrix

  • Song, Lei;Li, Jinhui;Garg, Ankit;Mei, Guoxiong
    • Geomechanics and Engineering
    • /
    • v.14 no.3
    • /
    • pp.283-291
    • /
    • 2018
  • Cracks in soil provide significant preferential pathways for contaminant transport and rainfall infiltration. Water exchange between the soil matrix and crack is crucial to characterize the preferential flow, which is often quantitatively described by a water exchange ratio. The water exchange ratio is defined as the amount of water flowing from the crack into the clay matrix per unit time. Most of the previous studies on the water exchange ratio mainly focused on cracked sandy soils. The water exchange between cracks and clay matrix were rarely studied mainly due to two reasons: (1) Cracks open upon drying and close upon wetting. The deformable cracks lead to a dynamic change in the water exchange ratio. (2) The aperture of desiccation crack in clay is narrow (generally 0.5 mm to 5 mm) which is difficult to model in experiments. This study will investigate the water exchange between a deformable crack and the clay matrix using a newly developed experimental apparatus. An artificial crack with small aperture was first fabricated in clay without disturbing the clay matrix. Water content sensors and suction sensors were instrumented at different places of the cracked clay to monitor the water content and suction changes. Results showed that the water exchange ratio was relatively large at the initial stage and decreased with the increasing water content in clay matrix. The water exchange ratio increased with increasing crack apertures and approached the largest value when the clay was compacted at the water content to the optimal water content. The effective hydraulic conductivity of the crack-clay matrix interface was about one order of magnitude larger than that of saturated soil matrix.