• Title/Summary/Keyword: seepage model test

Search Result 67, Processing Time 0.027 seconds

Two-dimensional deformation measurement in the centrifuge model test using particle image velocimetry

  • Li, J.C.;Zhu, B.;Ye, X.W.;Liu, T.W.;Chen, Y.M.
    • Smart Structures and Systems
    • /
    • v.24 no.6
    • /
    • pp.793-802
    • /
    • 2019
  • The centrifuge model test is usually used for two-dimensional deformation and instability study of the soil slopes. As a typical loose slope, the municipal solid waste (MSW) landfill is easy to slide with large deformation, under high water levels or large earthquakes. A series of centrifuge model tests of landfill slide induced by rising water level and earthquake were carried out. The particle image velocimetry (PIV), laser displacement transducer (LDT) and marker tracer (MT) methods were used to measure the deformation of the landfill under different centrifugal accelerations, water levels and earthquake magnitudes. The PIV method realized the observation of continuous deformation of the landfill model, and its results were consistent with those by LDT, which had higher precision than the MT method. The deformation of the landfill was mainly vertically downward and increased linearly with the rising centrifugal acceleration. When the water level rose, the horizontal deformation of the landfill developed gradually due to the seepage, and a global slide surface formed when the critical water level was reached. The seismic deformation of the landfill was mainly vertical at a low water level, but significant horizontal deformation occurred under a high water level. The results of the tests and analyses verified the applicability of PIV in the two-dimensional deformation measurement in the centrifuge model tests of the MSW landfill, and provide an important basis for revealing the instability mechanism of landfills under extreme hydraulic and seismic conditions.

One-way Drainage Filter for Drain ability Improvement of Dam and Embankment (댐, 제방 배수기능 개선을 위한 일방향 배수필터)

  • Kim, Hong-Taek;Yoo, Chan-Ho;Kim, Hyun-Tae
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.814-819
    • /
    • 2008
  • 본 연구에서는 기존의 배수필터를 개선함으로써 댐, 제방의 외부 유입 침투수를 차단할 수 있는 일방향 배수필터의 가능성을 확인하였다. 일방향 배수필터는 댐, 제방 내부의 침투수는 외부로 배출시키면서 외부의 유입 침투수는 차단하도록 여러 겹의 시트를 겹치도록 고안한 것으로, 본 연구에서는 일방향 배수필터의 가능성을 확인하고자 실내모형실험을 수행하였다. 실내모형실험을 진행하는 동안 계측되는 간극수압계를 이용하여 모형 댐, 제방의 거동을 확인하여 일방향 배수필터의 적용 가능여부를 확인하였다.

  • PDF

Ground Subsidence Mechanism by Ground Water Level and Fine Contents (지하수위와 세립분 함유량에 따른 지반함몰 메커니즘)

  • Kim, JinYoung;Lee, SungYeol;Choi, ChangHo;Kang, JaeMo;Kang, KwonSoo;Jeong, HyoJin;Hong, JaeCheol;Lee, JaeSoo;Baek, WonJin
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.59 no.5
    • /
    • pp.83-91
    • /
    • 2017
  • Recently, ground subsidence frequently occurs in downtown area. The major causes of the subsidence on the subsurface were the damages of the water supply and sewer pipelines and excavation works in adjacent areas, etc. Because of these various factors, it is not easy to analyze the tendency of occurrence of ground subsidence. The purpose of this study is to clarify the effect of ground subsidence by the change of the fine particle content and ground water level and to establish the ground subsidence mechanism. In this study, a model soil-box was manufactured to simulate the failure of the old sewer pipe which is one of the causes on ground subsidence. And a model test was conducted to investigate the effects of fine contents and ground water level on the cavity occurrence. From the test results, firstly the higher the ground water level, the faster the primary cavity is formed as the seepage stress increases. As a result, the secondary cavity and the ground subsidence rapidly progress due to the relaxation of the surrounding ground. The total amount of discharged soil was decreased as the fine content increased.

Experimental Study on Generating mechanism of The Ground Subsidence of Due to Damaged Waters supply Pipe (상수관로 파손으로 인한 지반함몰 발생메카니즘에 관한 실험적 연구)

  • Kim, Youngho;Kim, Joo-Bong;Kim, Dowon;Han, Jung-Geun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.16 no.2
    • /
    • pp.139-148
    • /
    • 2017
  • Ground subsidence caused by damaged water pipe and sewer is recently increasing due to the aging of city and pipeline in many city. Although many recent studies have verified characteristics of ground subsidence due to wastewater pipe breakdown, research about characteristics of ground subsidence due to water pipe is insignificant. subsidence due to water pipe is insignificant. This study aims to identify the ground failure mechanism caused by water and sewer pipe breakdown. Accordingly, we conducted an indoor model experiment to verify characteristics of ground subsidence considering characteristics of ground and ground failure. The water pipe pressure and velocity head was considered to find out ground subsidence mechanism. Also comparative analysis is conducted by analyzing relative density and fine-grain content considering embedded condition of water pipe. When the relative density and seepage pressure is low, small scale ground subsidence can occur, but when the conditions are opposite, ground subsidence occur in large scale and expands to ground level over time. Furthermore, it is acknowledgeable that ground cavity that is formed after soil run off due to seepage in deep earth, maintains steady strength and stays on the ground level for long period.

A Prediction of the Mobilized Tensile Forces of Nailed -Soil Excavated Walls (Nailed -Soil 굴착벽체의 발휘인장력 예측)

  • 김홍택;성안제
    • Geotechnical Engineering
    • /
    • v.11 no.2
    • /
    • pp.79-98
    • /
    • 1995
  • In the present study an analytical modeling was carried out to predict mobilized shear strength at the interface between the nail and surrounding soils by carefully examining the behavior characteristics of nailed boil excavated walls. Based on the developed model of mobilized shear strength, the method of overall stability analysis of nailed -soil walls was also developed using the Morgentern -Price limit -equilibrium slice method. The developed analytical procedure could predict the behaviors of nailed -soil excavated walls during the successive excavation stages, at the final stage of construction and post -construction stages. To verify the validity of the developed model and method of stability analysis, mobilized tensile forces of nails and overal stability estimated by the developed procedure were compared with test measurements from three nailed -soil experimental walls having different soil conditions. The effect of seepage pressures inside the soil mass was considered in the developed procedure.

  • PDF

A Study on the Injection Efficiency and Strength for Grouting Method (그라우팅공법의 최적 주입비와 강도에 관한 연구)

  • Kim, Sang-Hwan;Kim, Tae-Kyun;Choi, Jae-In;Yim, Ki-Woon
    • Journal of the Korean Geotechnical Society
    • /
    • v.26 no.9
    • /
    • pp.47-58
    • /
    • 2010
  • This paper presents the injection efficiency of 2.0 shot system which was verified by strength and injection time. In order to perform this study, laboratory model tests and field tests are carried out. The laboratory model tests consist of the test of injection time for verifying the injection ratio, and the tests of homo-gel and sand-gel strengths for estimating the characteristic of strength. It is found that the injection ratio of 1:2 shows the best seepage into the ground. The results of the strengths are also larger than other injection ratio. The large strength will also be expressed by field tests at construction site.

Monitoring of Fill Dams for Internal Defect via Centrifuge Model Tests (원심모형시험을 이용한 필댐 취약부 모니터링)

  • Choo, Yun Wook;Cho, Sung Eun;Shin, Dong Hoon
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.32 no.2C
    • /
    • pp.37-47
    • /
    • 2012
  • In this study, three centrifuge tests were performed to evaluate the feasibility of three physical quantities for detecting internal defect of earth core fill dam: pore water pressure, temperature, and electrical resistance. For this purpose, the measurement system for pore water pressure, temperature and electrical resistance on centrifuge model dams was established. Three centrifuge tests included a fill dam without internal defect and two other dams with artificial internal defect in the core. The effectiveness of seepage monitoring was examined during the centrifuge test. Test results showed the applicability of monitoring techniques to detect internal defect by monitoring pore water pressure, temperature, and electrical resistance.

Evaluation of Roofing Potential at the Ground-structure Interface (지반-구조물 경계면의 루핑 포텐셜 평가)

  • Park, Jeongman;Kim, Kanghyun;Shin, Jongho
    • Journal of the Korean GEO-environmental Society
    • /
    • v.19 no.3
    • /
    • pp.25-33
    • /
    • 2018
  • Piping is one of the most frequently occurring collapse type of a levee, and is often caused by roofing (backward erosion piping) at the ground-structure interface. Roofing is generally evaluated using creep ratio. However, creep ratio does not take into account the characteristics of the ground-structure interface. In this study, the roofing risk was investigated by using model test and numerical analysis considering the ground-structure interface characteristics. In the model test, it was confirmed that the piping potential decreased as the interface roughness increased, and this was applied to the numerical analysis. Existing numerical methods can not adequately simulate the particle behavior at the ground-structure interface because only the water level difference is considered. In this paper, particle behavior at the interface was investigated by performing seepage analysis and then, carrying out particle analysis technique simulating the boundary condition of the ground-structure interface. Analysis results have shown that the roofing resistance decreases as the ground-structure interface roughness decreases.

Behavior of Fill Dam Subjected to Continuous Water Level Change and Overflow (지속적 수위변동 및 월류에 따른 저수지 제체의 거동 연구)

  • Lee, Chungwon;Maeng, Youngsu;Kim, Yongseong
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.6
    • /
    • pp.41-48
    • /
    • 2014
  • In this study, the behavior of fill dam with continuous water level change considering velocity changes via centrifugal model test was investigated. In addition, the collapse of fill dam due to the overflow was also experimentally simulated. The experimental results demonstrate that the pore water pressures and displacements vary in proportion to the water-level-change velocity, and the displacement increment is independent to the water-level-change velocity. Also, it is confirmed that the continuous water level change induces to the progress of fill-dam deformation due to displacement accumulation and the fill-dam stability dramatically degrades owing to the overflow. Hence, the real-time monitoring of pore water pressures and displacements of fill dam, and the control of water level in heavy rain through the countermeasure such as opening sluice gates are needed to ensure the stability of fill dam.

An Experimental Study on Overflow and Internal Erosion Protection Technology of a Reservoir (저수지 제체월류 및 내부침식 보호기술 모형실험 연구)

  • Jin, Ji-Huan;Lee, Tae-Ho;Yoo, Jeon-Yong;Im, Eun-Sang;Lee, Seung-Joo;Kim, Yong-Seong
    • Journal of the Korean Geosynthetics Society
    • /
    • v.18 no.4
    • /
    • pp.181-191
    • /
    • 2019
  • Most of the reservoirs in South Korea are fill dam, and overflow and piping phenomena have been detected as the main causes of failure of fill dam. In this study, an operating ◯◯ reservoir located in Gongju-si is modeled in centrifuge model test to study the behavior of reservoir during water level rise and overflow conditions. In order to simulate seepage and overflow in the real reservoir, the model was constructed in 1/50 scale, and deteriorated and reinforced conduits were installed. After modeling the reinforced and deteriorated conditions of the conduits, LVDTs, pore pressure gauges were installed and centrifuge model tests were carried out with water level rise and overflow conditions in order to analyze the reservoir behavior according to the reinforcement methods. The results of centrifuge model test in water level rise condition show that deteriorated conduit has adverse effects in the stability of the reservoir body, and the conduit which is reinforced by the inverse lining method has enhanced stability of the reservoir body. Moreover, installation of water spillway is seen to prevent the scour and erosion of the reservoir body. The study provides a basic data required for the reinforcement of conduit and water spillway in the reservoir.