DOI QR코드

DOI QR Code

Two-dimensional deformation measurement in the centrifuge model test using particle image velocimetry

  • Li, J.C. (Center for Hypergravity Experimental and Interdisciplinary Research) ;
  • Zhu, B. (Center for Hypergravity Experimental and Interdisciplinary Research) ;
  • Ye, X.W. (MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering) ;
  • Liu, T.W. (MOE Key Laboratory of Soft Soils and Geoenvironmental Engineering) ;
  • Chen, Y.M. (Center for Hypergravity Experimental and Interdisciplinary Research)
  • Received : 2019.05.26
  • Accepted : 2019.08.21
  • Published : 2019.12.25

Abstract

The centrifuge model test is usually used for two-dimensional deformation and instability study of the soil slopes. As a typical loose slope, the municipal solid waste (MSW) landfill is easy to slide with large deformation, under high water levels or large earthquakes. A series of centrifuge model tests of landfill slide induced by rising water level and earthquake were carried out. The particle image velocimetry (PIV), laser displacement transducer (LDT) and marker tracer (MT) methods were used to measure the deformation of the landfill under different centrifugal accelerations, water levels and earthquake magnitudes. The PIV method realized the observation of continuous deformation of the landfill model, and its results were consistent with those by LDT, which had higher precision than the MT method. The deformation of the landfill was mainly vertically downward and increased linearly with the rising centrifugal acceleration. When the water level rose, the horizontal deformation of the landfill developed gradually due to the seepage, and a global slide surface formed when the critical water level was reached. The seismic deformation of the landfill was mainly vertical at a low water level, but significant horizontal deformation occurred under a high water level. The results of the tests and analyses verified the applicability of PIV in the two-dimensional deformation measurement in the centrifuge model tests of the MSW landfill, and provide an important basis for revealing the instability mechanism of landfills under extreme hydraulic and seismic conditions.

Keywords

Acknowledgement

Supported by : National Science Foundation of China, Zhejiang Provincial Natural Science Foundation of China, Central Universities of China

References

  1. Adalier, K. and Sharp, M.K. (2004), "Embankment Dam on Liquefiable Foundation-dynamic Behavior and Densification Remediation", J. Geotech. Eng., 130(11), 1214-1224. DOI:10.1061/(ASCE)1090-0241(2004)130:11(1214).
  2. Baba, H.O. and Peth, S. (2012), "Large-scale Soil Box Test to Investigate Soil Deformation and Creep Movement on Slopes by Particle Image Velocimetry (PIV)", Soil Tillage Res., 125, 38-43. DOI: 10.1016/j.still.2012.05.021.
  3. Bransby, M.F., Davies, M.C.R., Nahas, A.E. and Nagaoka, S. (2008), "Centrifuge Modelling of Reverse Fault-foundation Interaction", B. Earthq. Eng., 6(4), 607-628. DOI: 10.1007/s10518-008-9080-7.
  4. Butterfield, R., Harkness, R. and Andrews, K. (1970), "A sterophotogrammetric method for measuring displacement fields", Geotechnique, 20(3), 308-314. DOI:10.1680/geot.1970.20.3.308.
  5. Chen, Y.M., Li, J.C., Yang, C.B., Zhu, B. and Zhan L.T. (2017), "Centrifuge modeling of municipal solid waste landfill failures induced by rising water levels", Can. Geotech. J., 54(12), 1739-1751. DOI: 10.1139/cgj-2017-0046.
  6. Chen, Y.M., Kong, L.G., Zhou, Y.G., Jiang, J.Q. and Tang, X.W. (2010), "Development of a large geotechnical centrifuge at Zhejiang University", Proceedings of the 7th International Conference on Physical Modelling in Geotechnics, Zurich, Switzerland. DOI: 10.1201/b10554-32.
  7. Choo, Y.W., Shin, D.H. and Sung, E.C. (2013), "Seepage behavior of drainage zoning in a concrete faced gravel-fill dam via centrifuge and numerical modeling", KSCE J. Civ. Eng., 17(5), 949-958. DOI: 10.1007/s12205-013-0215-2.
  8. Gill, D. and Barry, M. (2001), "An optical technique for investing soil displacement patterns", Geotech. Test. J., 24(3), 324-329. DOI: 10.1520/GTJ11351J.
  9. Heijs, A.W., Lange, D.J., Schoute, J.T. and Bouma J. (1995) "Computed tomography as a tool for non-destructive analysis of flow patterns in macroporous clay soils", Geoderma., 64(3), 183-196. DOI: 10.1016/0016-7061(94)00020-B.
  10. Huang, B., Liu, J.W., Ling D.S. and Zhou, Y.G. (2015), "Application of particle image velocimetry (PIV) in the study of uplift mechanisms of pipe buried in medium dense sand", J. Civil Struct. Health Monit., 5(5), 599-614. DOI:10.1007/s13349-015-0130-y.
  11. Idinger, G., Aklik, P., Wu W. and Borja, R.I. (2011), "Centrifuge model test on the face stability of shallow tunnel", Acta Geotech., 6(2), 105-117. DOI: 10.1007/s11440-011-0139-2.
  12. Kim, M.K., Lee, S.H., Choo, Y.W. and Kim, D.S. (2011), "Seismic behaviors of earth-core and concrete-faced rock-fill dams by dynamic centrifuge tests", Soil Dyn. Earthq. Eng., 31(11), 1579-1593. DOI: 10.1016/j.soildyn.2011.06.010.
  13. Koerner, R.M. and Soong, T.Y. (2000), "Leachate in landfills: the stability issues", Geotext. Geomembranes, 18(5), 293-309. DOI:10.1016/S0266-1144(99)00034-5.
  14. Lee, Y.S., Cheuk, C.Y. and Bolton, M.D. (2008), "Instability caused by a seepage impediment in layered fill slopes", Can. Geotech. J., 45(10), 1410-1425. DOI: 10.1139/T08-067.
  15. Li, B., Yu, W., Gong B. Cheng, Z.L. (2013), "Centrifugal and numerical modeling of high and steep geosynthetic-reinforced slopes", Geotech. Spec. Publ., 231, 482-488. DOI:10.1061/9780784412787.050.
  16. Liu, R., Yan, S. and Wu, X. (2012), "Model test studies on soil restraint to pipeline buried in Bohai soft clay", J. Pipeline Syst. Eng. Pract., 4(1), 49-56. DOI: 10.1061/(asce)ps.1949-1204.0000109.
  17. Merry, S.M., Kavazanjian, E. and Fritz, W.U. (2005), "Reconnaissance of the July 10, 2000, Payatas landfill failure", J. Perform. Constr. Fac., 19(2), 100-107. DOI: 10.1061/(ASCE)0887-3828(2005)19: 2(100).
  18. Ng, C.W., Li, X.S., Van, L.P. A. and Hou, D.Y. (2004) "Centrifuge modeling of loose fill embankment subjected to uni-axial and biaxial earthquakes", Soil Dyn Earthq Eng., 24(4), 305-318. DOI: 10.1016/j.soildyn.2003.12.002.
  19. Rechenmacher, A.L. and Finno, R.J. (2004), "Digital image correlation to evaluate shear banding in dilative sands", Geotech. Test. J., 27(1), 13-22. DOI: 10.1520/GTJ10864.
  20. Stanier, S.A. and White, D.J. (2013), "Improved image-based deformation measurement in the centrifuge environment", Geotech. Test. J., 36(6), 915-928. DOI: 10.1520/GTJ20130044.
  21. Stanier, S. A., Blaber, J., Take, W.A. and White, D.J. (2016), "Improved image-based deformation measurement for geotechnical applications", Can. Geotech. J., 53, 727-739. DOI:10.1139/cgj-2015-0253.
  22. Take, W.A. (2015), "Thirty-sixth canadian geotechnical colloquium: advances in visualization of geotechnical processes through digital image correlation", Can. Geotech. J., 52(9), 1199-1220. DOI: 10.1139/cgj-2014-0080.
  23. Take, W.A., Bolton, M.D., Wong P.C. and Yeung, F.J. (2004), "Evaluation of landslide triggering mechanisms in model fill slopes", Landslides, 1(3): 173-184. DOI: 10.1007/s10346-004-0025-1.
  24. Thusyanthan, N.I., Madabhushi, S.P.G. and Singh, S. (2006), "Centrifuge modeling of solid waste landfill systems-Part 1:development of a model municipal solid waste", Geotech. Test. J., 29(3), 217-222. DOI: 10.1520/GTJ12299.
  25. Viswanadham, B.V.S. and Jessberger, H.L. (2005), "Centrifuge modeling of geosynthetic reinforced clay liners of landfills", J. Geotech. Geoenviron. Eng., 131(5), 564-574. DOI:10.1061/(ASCE)1090-0241(2005)131:5(564).
  26. Viswanadham, B.V.S. and KoNig, D. (2009), "Centrifuge modeling of geotextile-reinforced slopes subjected to differential settlements", Geotext. Geomembranes, 27(2), 77-88. DOI: 10.1016/j.geotexmem.2008.09.008.
  27. White, D.J., Take, W.A. and Bolton, M.D. (2003), "Soil deformation measurement using particle image velocimetry (PIV) and photogrammetry", Geotechnique, 53(7), 619-631. DOI: 10.1680/geot.53.7.619.37383.
  28. Yang, Z.H., Elgamal, A.W., Adalier K. and Sharp, M.K. (2004), "Earth dam on liquefiable foundation and remediation:numerical simulation of centrifuge experiments", J. Eng. Mech., 130(10), 1168-1176. DOI: 10.1061/(asce)0733-9399(2004)130:10(1168).
  29. Ye, X.W., Ni, Y.Q., Wai, T.T., Wong, K.Y., Zhang, X.M. and Xu, F. (2013), "A vision-based system for dynamic displacement measurement of long-span bridges: algorithm and verification", Smart Struct. Syst., 12(3-4), 363-379. https://doi.org/10.12989/sss. 2013.12.34.363.
  30. Ye, X.W., Dong, C.Z. and Liu, T. (2016a), "Image-based structural dynamic displacement measurement using different multi-object tracking algorithms", Smart Struct. Syst., 17(6), 935-956. https://doi.org/10.12989/sss.2016.17.6.935.
  31. Ye, X.W., Dong, C.Z. and Liu, T. (2016b), "Force monitoring of steel cables using vision-based sensing technology:methodology and experimental verification", Smart Struct. Syst., 18(3), 585-599. https://doi.org/10.12989/sss.2016.18.3.585.
  32. Zhan, L.T., Chen, Y.M. and Ling, W.A. (2008), "Shear strength characterization of municipal solid waste at the Suzhou landfill, China", Eng. Geol., 97(3-4), 97-111. DOI:10.1016/j.enggeo.2007.11.006.
  33. Zhang, D., Xu, Q., Bezuijen, A., Zheng, G. and Wang, H.X. (2016), "Internal deformation monitoring for centrifuge slope model with embedded FBG arrays", Landslides, 14(1), 407-417. DOI: 10.1007/s10346-016-0742-2.
  34. Zhang, G., Hu, Y. and Zhang, J.M. (2009), "New image analysisbased displacement-measurement system for geotechnical centrifuge modeling tests", Measurement, 42(1), 87-96. DOI:10.1016/j.measurement.2008.04.002.