• Title/Summary/Keyword: seedling-pot

Search Result 166, Processing Time 0.023 seconds

Effects of Seed Size and Weight on Growth of First-Year Seedling in Pinus koraiensis (잣나무종자(種子)의 크기와 무게가 묘목(苗木)의 초기생장(初期生長)에 미치는 영향(影響))

  • Chon, Sang Keun
    • Journal of Korean Society of Forest Science
    • /
    • v.31 no.1
    • /
    • pp.48-52
    • /
    • 1976
  • In order to investigate the effects of seed weight, size (length and thickness), and maturation period (early maturing seed or late maturing seed) on growth of first-year seedlings in Pinus koraiensis, pot cultivation experiment with seeds collected from Gangweon University Forest was carried out under relatively controlled environment condition. At the end of one growing season, not only fresh weight, length, diameter (at underside of cotyledon) and root length of seedlings, but also number and length of cotyledon were measured. Results are as follows; 1. Germination percentage is independent of weight and size of seeds, but it was influenced by maturation period, that is, late maturing seeds surpass early maturing one in germination percentage. 2. Germination percentage is affected by maturation period of seeds in 18.3% of contribution rate. 3. Each growth of first-year seedlings is influenced considerably by the differences of weight, length and thickness of seeds, that is, heavy and large seeds produce larger seedlings than do light and small seeds. Particularly, fresh weight, diameter, length of cotyledon are significantly affected by differences of seed weight and size (length and thickness) in 50-90% of contribution rate. 4. Differences of seed weight and thickness have a tendency to affect more on growth of first-year seedlings than do differences of seed length. 5. Seedlings from late maturing seeds are superior than those from early maturing one in fresh weight, diameter of seedlings and length of cotyledon, but it's influence is a little.

  • PDF

Effects of Irrigation and Ginseng Root Residue on Root Rot Disease of 2-Years-Old Ginseng and Soil Microbial Community in the Continuous Cropping Soil of Ginseng (인삼 연작토양에서 관수 및 인삼뿌리 잔사물이 토양 미생물상 및 뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Moon Won;Park, Kyung Hoon;Jang, In Bok
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.5
    • /
    • pp.345-353
    • /
    • 2018
  • Background: Some phenolics detected in the soil may inhibit the seed germination and seedling growth of ginseng (Panax ginseng). This study investigated the effect of irrigation and ginseng root residue addition on the soil microbial community and root rot disease in 2-year-old ginseng. Methods and Results: Each $20{\ell}$ pot was filled with soil infected with ginseng root rot pathogens, and irrigated daily with $2{\ell}$ of water for one month. After the irrigation treatment, ginseng fine root powder was mixed with the irrigated soil at a rate of 20 g per pot. In descending order, ${NO_3}^-$, electric conductivity (EC), exchangeable Na (Ex. Na) and K (Ex. K) decreased due to irrigation. In descending order, ${NO_3}^-$, EC, Ex. K, and available $P_2O_5$ increased with the additon of ginseng powder to the soil. The abundance of Trichoderma crassum decreased with irrigation, but increased again with the incorporation of ginseng powder. The abundance of Haematonectria haematococca increased with irrigation, but decreased with the incorporation of ginseng powder. The abundance of Cylindrocarpon spp. and Fusarium spp., which cause ginseng root rot, increased with the incorporation of ginseng powder. The abundance of Arthrobacter oryzae and Streptomyces lavendulae increased with irrigation. The abundance of Streptomyces lavendulae decreased, and that of Arthrobacter spp. increased, with the incorporation of ginseng powder. Aerial growth of ginseng was promoted by irrigation, and ginseng root rot increased with the incorporation of ginseng powder. Conclusions: Ginseng root residues in the soil affected soil nutrients and microorganisms, and promoted ginseng root rot, but did not affect the aerial growth of ginseng.

Effect of Nitrogen and Age of Alfalfa ( Medicago sativa L. ) Seeding on Growth and Nodulation When Growth under a Cool Environment (저온하에서 질소시비가 근류균을 접종한 Alfalfa의 생육부위에 미치는 영향에 관하여)

  • ;E. H. Jensen
    • Journal of The Korean Society of Grassland and Forage Science
    • /
    • v.6 no.3
    • /
    • pp.151-156
    • /
    • 1986
  • There are differences in recommendations in the USA as to whether nitrogen fertilizer should be applied when establishing alfalfa (Medicago sativa L). The reason for not applying nitrogen is because some researchers found the addition of nitrogen reduced nodulation of alfalfa plants. A replicated experiment was conducted under controlled environmental conditions at the University of Nevada-Reno, Reno, Nevada, USA, to determine the effects of nitrogen application on seedling growth and nodulation of alfalfa when grown in a cool environment. A sterile sand was used in the growing media to which a complete nutrient solution minus nitrogen was applied volumetrically to each pot daily. Half of the pots received $NH_4NO_3$, at the rate of 11.2 kg/ha, at seeding and two and four weeks after planting, giving a total nitrogen application rate of 33.6 kg/ha. Rhizobia inoculant (R-12) consisted of a mixture of strains 171-15a. 1682c and 80 PI 265 of Rhizobium meliloti. Inoculant was applied to the seeds prior to planting and to the sand media at two and four weeks after seeding. Twenty seeds were planted in pots 14.0 cm in diameter and 11.5 cm deep. Seedlings were thinned after emergence to ten plants per pot. They were grown in a controlled environment chamber with a 16-hour light period. Soil temperatures at 6 cm depth ranged from $5.7^{\circ}C\;to\;21.5^{\circ}C$ and had a daily mean of $16.2^{\circ}C$ Plants were harvested at weekly intervals for seven weeks at which time root, shoot and total length, dry weight, volume and number of nodules per plant were determined. Root, shoot and total length were not affected by nitrogen fertilizer. However, application of nitrogen increased the size of the seedlings as determined by dry weight and volume when compared to plants which were not fertilized. This indicates that rhizobia did not fix enough atmospheric nitrogen to promote good growth. Nitrogen application resulted in significantly more nodules per plant. The effect of nitrogen fertilizer became more apparent as the plant became older. Results of this experiment show there are benefits from applying nitrogen at a low rate when establishing alfalfa under a cool environment.

  • PDF

Influences of Polycyclic Aromatic Hydrocarbons on Soybean and Rice Growth (다환방향족탄화수소가 콩과 벼의 생육에 미치는 영향)

  • Kim, Young-Ju;Shim, Doo-Bo;Song, Sun-Hwa;Kim, Seok-Hyeon;Chung, Jong-Il;Kim, Min-Chul;Chung, Jeong-Sung;Kim, Hyung-Gon;Shim, Sang-In
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.59 no.2
    • /
    • pp.181-187
    • /
    • 2014
  • Polycyclic aromatic hydrocarbons (PAHs) are a group of ubiquitous hazardous pollutants derived from fossil fuel, various combustion sources and pyrolysis of a wide range of plastics. Because PAHs can be uptake into crop plants, the inhibitory effects on rice and soybean plants were examined in greenhouse and growth chamber experiment. Soil-applied PAHs (phenanthrene of 0, 10, 30, 100 ppm) slightly reduced the plant height and dry weight both in transplanted rice and soybean plant. The inhibitory effect on growth was greater in soybean than rice. Plant height of soybean plants treated by 100 ppm was 58.9 cm and this value was 87.2% of untreated plant. In rice plant, the plant height was less inhibited (96.0% of untreated plant) by 100 ppm at 80 days after treatment (DAT). However, leaf chlorophyll content and chlorophyll fluorescence were less inhibited by PAHs at late growth stage (after heading) although the photosynthesis-related parameters were slightly inhibited from 20 DAT to 70 DAT. In agar medium experiment with infant seedlings, inhibition of seedling length and fresh weight by phenanthrene at 100 ppm were greater as compared to the experiment with adult plant in pot. Seedling length and fresh weight were reduced by 54.2% and 33.3% for rice and 27.9% and 13.2% for soybean, respectively. The results reflected that PAHs were more inhibitory during juvenile stage than adult stage and more inhibitory to rice plant than soybean for juvenile stage.

The Anti-bacterial Activity of Eco-friendly Farming Material based on Chinese Nut-gall Extraction on Acidovorax citrulli (오배자 추출물 유래 친환경제제의 세균성과실썩음병균에 대한 항세균활성)

  • Seo, Tae-Jin;Yang, Soo-Jeong;Lee, Bong-Choon;Kim, Kang-Min;Lee, Kui-Jae;Ju, Ho-Jong
    • Korean Journal of Organic Agriculture
    • /
    • v.24 no.3
    • /
    • pp.571-582
    • /
    • 2016
  • Bacterial fruit blotch (BFB) is one of most important diseases in Cucurbitaceae due to infection of Acidovorax citrulli, causing huge economic losses damage worldwide. This seedborn disease spread rapidly at period of high temperature and humidity. The eco-friendly farming is getting popular. So far there was no effective agent to control BFB in eco-friendly farming. Therefore, effect of the material based on chinese nut-gall extract with antibacterial activity against BFB to was tested against A. citrulli. Different hosts showed various symptoms of BFB. Liquid formulation among exhibited most effective anti-bacterial activity on A. citrulli. Pot experiment in greenhouse showed the potential as an control agent of BFB in cucurbits. The treatment of material based on chinese nut-gall extract showed the positive effect on survival of the watermelon seedling and on the length of the cucumber seedling treated with A. citrulli. We cautiously conclude that the material based on chinese nut-gall extract used in this study may be good agents against major diseases of cucurbits in the future even though it is require to be tested with more study on field test.

Study on the Potential of Phytoremediation using Wild Plants for Heavy Metal Pollution (중금속 오염에 대한 Phytoremediation 용 야생식물 연구)

  • Kang, Byeung-Hoa;Shim, Sang-In;Lee, Sang-Gak;Kim, Kwang-Ho;Chung, Il-Min
    • Korean Journal of Environmental Agriculture
    • /
    • v.17 no.4
    • /
    • pp.312-318
    • /
    • 1998
  • The potentials of some Korean wild plants as a phytoremediator for cleaning heavy metal pollution were measured. Several plant species, Ambrosia trifida, Brassica juncea, Rumex crispus, and Abutilon theophrasti screened previously for phytoremediator were treated with cadmium and copper solution. In order to know the growth response to heavy metal stress, the plants were cultivated in hydroponic system containing heavy metals with different concentration. To know the effects of heavy metals on emergence and seedling growth, seeds of 4 species were sown in the pot and watered with heavy metal solution adjusted pH to 6.5, 5.5, and 4.5. A proposed species as potential phytoremediator, A. trifida, showed tolerance to $20{\mu}mol/L$ Cd and $80{\mu}mol/L$ Cu in nutrient solution without apparent growth reduction, and up to $100{\mu}mol/L$ Cd and $400{\mu}mol/L$ Cu without critical visual injury. Up to 311mg/kg of Cd and 369mg/kg were accumulated in dried aerial part in A. trifida. In contrast, A. theophrasti showed injury at $400{\mu}mol/L$ Cu. Significant differences were shown in Cu accumulation among the four species. A. trifida had much higher concentrations of Cd in the shoot, whereas R, crispus accumulated higher concentrations of Cd in the shoot. Testing plant species showed reduced emergence rate with heavy metal treatment. When pH was lowered, the emergence and seedling growth were affected severely with heavy metal. We can suggested that A. trifida was the most proper species for phytoremediation in heavy metal-polluted regions.

  • PDF

Effect of Alkaline Pretreatment on Sludge Aerobic Digestion and Fertilizer Value (알칼리 전처리에 의한 슬러지 호기성 소화 및 액비 특성 변화)

  • Hwang, Eung-Ju
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.1
    • /
    • pp.90-96
    • /
    • 2008
  • In order to meet the stringent requirement of sludge disposal and to find ecological alternative, aerobic digestion coupled with alkaline pretreatment was studied. The treated sludge was tested for the potential of liquid fertilizer. In the aerobic digestion, it was obvious that the performance of digester B(fed with the sludge pretreated by NaOH) was better than that of digester A(fed with raw sludge) in terms of COD and SS removal. SS and VSS removal rates in digester B were 66% and 69%, respectively. At 5 days, TSS removal rate reached 47% in the digester B, which was 71% of final TSS removal rate. It revealed that the pretreatment process can shorten the retention time of aerobic digestion. 94.1% of TCOD in the raw sludge was reduced by alkaline pretreatment and aerobic digestion. Final SCOD was in the range of 220$\sim$230 mg/L implying the sludge was stabilized. Nitrification and pH drop were observed in the aerobic digestion. Final nitrate concentrations in digester A and B were 445.4 and 223.1 mg/L and final pH in digester B was 3.0. Biological assays reported that leaf size of cucumber seedling increased with nitrate concentration and sludge to soil ratio. The sludge treated by alkaline and aerobic digestion promoted the growth of seedling leaf and stem remarkably compared to raw sludge. In contrast, the aerobically digested sludge without pretreatment improved leaf growth and inhibited stem growth.

The Effect of Blue and Red LEDs Irradiation on The Growth Characteristics and Ginsenoside Content of Panax ginseng C. A. Meyer (청색과 적색의 혼합LED광 처리가 인삼의 생육 및 진세노사이드 함량에 미치는 영향)

  • Seong, Bong-Jae;Kim, Hyun-Ho;Cho, Jin-Woong
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.60 no.1
    • /
    • pp.70-74
    • /
    • 2015
  • An LED plant factory farm is an alternative way to grow crops regardless of weather, season, and blight in such times of climate change. In recent years, it is a currently active and vibrant research field. The industry, which ranges from leaf vegetables to high value products, is expanding. This study was conducted to test tthe response of LED (Light-emitting diode) irradiation on the growth characteristics and ginsenoside levels indoors, in order to find out suitable light conditions. Ginseng seedling was transplanted from a styrofoam pot ($L{\times}W{\times}D$:$495{\times}315{\times}215mm$, inside diameter) into a closed plant production system in four blue LED (BL) and red LED (RL) different ratios of 1:1, 1;2, 1:3, 1:4 in a temperature range of $20{\sim}25^{\circ}C$, relative humidity of between 55 and 65%, and a 12-hour photoperiod. The LED irradiation shows the highest levels were found at 1:1 of BL and RL ratio at $61.21{\mu}mol\;s^{-l}m^{-2}$, 1:2 ratio $68.55{\mu}mol\;s^{-l}m^{-2}$, 1:3 ratio $63.85{\mu}mol\;s^{-l}m^{-2}$ and 1:4 ratio $62.41{\mu}mol\;s^{-l}m^{-2}$ from highest to lowest respectively. After analyzing from shoot and root 2 yers old ginseng plant which were cultivated under 1:3 irradiation of BL and RL ratio, it generally showed a positive effect under a 1:3 ratio of BL and RL.

Seedling Growth and Morphology as Influenced by Removal of Cotyledon and Unifoliolate in White Clover (자엽 및 단엽 제거에 따른 White Clover의 유묘기 생장과 형태적 특성)

  • 강진호;박진서;이희원
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.39 no.5
    • /
    • pp.480-488
    • /
    • 1994
  • Low seedling growth rates of white clover (Trifolium repens L.) have been limited its good establishment to pastures. The experiment was done to determine the effect of removal of cotyledon and unifoliolate on the growth and morphological characters of contrasting white clover cultivars for 8 weeks after the treatment. Individual plants of cv. Regal (large leaf), Louisiana S-l (medium-large leaf), Grasslands Huia (medium-small leaf) and Aberystwyth S184 (small leaf) were grown in 10cm plastic pot containing a 2:1:1 soil:sand:peat moss mixture until the cotyledon or unifoliolate stage and then removed one (C1) or two cotyledons (C2) at cotyledon stage, and unifoliolate only (U), unifoliolate and one cotyledon (DC1) or unifoliolate and two cotyledons (DC2) at the unifoliolate stage. To measure the removal effect on biomass and morphological characters (leaf area, petiole and stolon lengths, growing tips and leaves), plants were sampled 4, 6 and 8 weeks after the treatment. Intact plants had greater biomass and morphological characters than removal-treated ones, Removal treatments at cotyledon stage, C1 and C2, were decreased more biomass and morphological characters than removal ones at unifoliolate stage while the severer cotyledon removal, the more reduction. Stolon length per plant and petiole length markedly inclined 6 weeks after the treatments although biomass and the other characters continuously did. Relatively large-leaved cultivar had more biomass, leaf area per plant and longer petiole than the other(s) but the reverse results were true in stolon length, growing tips and no. of leaves per plant. Biomass was linearly increased with increased leaf area but the earlier and severer removal, the less slope. The severer damage of cotyledon and unifoliolate had detrimental effects on the growth and aftermath establishment of white clover

  • PDF

Improvement of Mutation Rate and Reduction of Somatic Effects by Double Treatment of Chemical Mutagens in Barley (화학 돌연변이제 이중처리에 의한 돌연변이율 향상 및 생장저해 경감)

  • 구본철
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.3
    • /
    • pp.348-353
    • /
    • 1996
  • Mutation tachniques inducing more useful mutations and reducing somatic effects need to be improved for crop breeding. Seeds of barley varieties ; Dema, Grosso were treated with two types of mutagens ; 1) chemical treatment: single treatment or double treatment of two mutagens (N-nitroso-N-methylurea ; MNH, Sodium Azide; NaN$_3$) 2) gamma ray irradiation treatment. After treatment, half of seeds were used for germination test and half of seeds were sown to the field. With the higher dose of mutagen both chemical and gamma ray were plants treated, the higher rate of growth reduction rate was in M$_1$ seedling. In chemical treatment, germination rate of seeds, growth rate of coleoptile and root in double treatment of chemical mutagens were better than single treatments, especially in same dose. Growth inhibition rate of plant in double treatment of 1.0mM MNH(0.5mM MNH + 0.5mM MNH), for example, were less than one of plants of single treatment of 1.0mM MNH in pot and petri dish test. Growth reduction rate of culm and fertility rate in M$_1$ plants double treated in same dose of single treatment were also less than single one. With the higher dose of mutagen both chemical and gamma ray were plants treated, the higher frequency of chlorophyll mutants was in M$_2$ seedling. The rate of chlorophyll mutants in double treatment of chemical mutagens were higher than single treatment. Double treatment methods can be a improved method for induction of new good mutants, which were induced more useful mutations and reduced harmful somatic effects.

  • PDF