• Title/Summary/Keyword: seed planting date

Search Result 70, Processing Time 0.03 seconds

An Optimum Seed Planting Time of Chinese Milk Vetch (Astragalus sinicus L.) for Stable Seedling Establishment and Dry Matter Production in Paddy Field (벼 낙수시기 기준 자운영 파종적기 구명)

  • Kim, Sang-Yeol;Oh, Seong-Hwan;Choi, Kyung-Jin;Kim, Jeong-Il;Park, Sung-Tae;Yeo, Un-Sang;Kang, Hang-Won
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.54 no.3
    • /
    • pp.260-264
    • /
    • 2009
  • Sufficient seedling establishment of Chinese milk vetch (CMV) is the most important factor in the CMV cultivation. In order to obtain sufficient seedling stand, CMV seed should be planted at right seed planting date. An optimum CMV seed planting time for stable seedling establishment was determined based on the final water drainage time for rice harvest in fall. Five planting times from 10 days before water drainage (DBWD) to 15 days after water drainage (DAWD) at five day interval were evaluated during the period of 2006-2007 and 2007-2008 and the optimum CMV seed planting time was determined based on seedling stand, winter survival rate, and dry matter production. CMV seedling stand before winter was high with $575{\sim}1,050\;plants/m^2$ regardless of seed planting times but after overwintering, it was greater in seed planting date between 5 DBWD to 5 DAWD than that of 10 to 15 DAWD treatments. Winter survival rate, dry matter production and seed production yield also showed similar trend to the seedling establishment. On the other hand, when CMV seeds were sowed early at 10 DBWD, seedling stand and winter survival rate were lower than that of 5 DBWD to 5 DAWD. This result indicates that an optimum CMV seed planting time based on the final water drainage could be between 5 DBWD (September 20) to 5 DAWD (September 30).

Effects of Transplanting and Direct Seeding on the Growth and Yield of Rapeseed (Brassica napus L.) during Spring Cultivation (유채 봄 재배 시 기계이식과 직파 재배시기에 따른 생육 및 수량 비교)

  • Lee, Ji-Eun;Kim, Kwang-Soo;An, Da-hee;Cha, Young-Lok
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.66 no.4
    • /
    • pp.419-427
    • /
    • 2021
  • In South Korea, direct seeding of rapeseed (Brassica napus L.) is difficult during spring cultivation in early March because of the low yield production associated with late flowering and poor seed quality. To compare the period of direct sowing, the present study investigated the growth characteristics of rapeseed according to planting dates. Specifically, 35 day-old seedlings were transplanted or directly sown on four different dates (late February, early March, late March, and early April) in 2020 and 2021. As the planting date was delayed, the days to flowering of rapeseed decreased. Similarly, the plant height, seed set percentage, and seed yield of rapeseed were reduced upon delay in planting. The seed yield of rapeseed through direct seeding in late February was the highest, 2.76 ton·ha-1. On all seeding dates, except for late February, the transplanted rapeseed produced a higher yields than the directly seeded rapeseed. The crude oil and oleic acid content, which is related to the quality of rapeseed, decreased with the delay in planting dates, and this decrease was greater, with the direct seeding of rapeseed depending on the sowing time. In the correlation analysis, the planting date was significantly and negatively correlated with the yield, crude oil content, and oleic acid content of the transplanted rapeseed, while the sowing date was negatively correlated with the plant height, silique size, yield, and seed quality of the directly seeded rapeseed. Finally, the effect of planting date on rapeseed growth was stronger in direct seeding than in transplanting. Therefore, during spring cultivation after late February to early March, transplanting, rather than direct seeding, in more advantageous in terms of seed quality and yield.

Optimum Sowing Date for Seed Production in Hemp (대마의 채종재배를 위한 파종적기)

  • 박규철;박태동;박인진;권병선;김상철;정병준;김명석
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.42 no.4
    • /
    • pp.424-428
    • /
    • 1997
  • This study was carried out to investigate the effects of sowing dates, Apr. 25, May 15, June 5 and June 25, on sex ratio, growth and seed yield of "Chonnam species", local variety of hemp plant. The results were following as. : In sex ratio according to the different seeding dates, the revealating rate of female and male plants were highest on June 25, and Apr. 25, respectively. The length of stem, the number of branches, nodes, and seed yield were increased on May 15, but these charateristics were rapidly reduced on June 25 because of short growing period. Yield of seeds was increased by 24% on May 15 comparing with 1.30ton /ha on Apr. 25.

  • PDF

Biomass Partitioning during Early Growth Stage of Soybean in Response to Planting Time

  • Seong, Rak-Chun
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47 no.4
    • /
    • pp.286-291
    • /
    • 2002
  • Seedling establishment of soybean [Glycine max (L.) Merr.] is a critical factor in production system and cultural practices. The objective of this study was to identify the components of soybean seedling developments encompassing planting dates and cultivars that respond to emergence, early growth stage and dry matter accumulation. Three soybean cultivars, Hwangkeumkong, Shinpaldalkong 2, and Pungsannamulkong, were planted at Baegsan silty loam soil. Planting date was May 13, June 3, and June 24 in 2001. Sprinkler irrigation was accompanied with 30mm after seeding for three planting dates. Soybean seedlings were sampled at the growth stages from VE to V5. Days to emergence of soybean seedlings were taken 8 at May 13 and 5 at June 24 plantings. Emergence percentage was over 90 at three planting dates. May 13 planting took 33 days and June 24 planting was 25 days for reaching V5 growth stage. Cotyledon number was decreased after V2. Significant cultivar difference was found in cotyledon dry weight until V2 which differed in seed dry weights at the planting times. Leaf and total dry weights of soybean seedlings were not differed from V1 to V3 among planting dates and cultivars. Leaf water contents were generally ranged 78 to 85%. Branch was appeared from V4. Leaf/stem ratio among cultivars was similar at five growth stages and gradually increased from 2.1 at V1 to 2.8 at V5. The results based on this experiment indicated that seedling establishment of soybean was continued from VE to V3 growth stages affecting mainly by planting date and soil moisture.

Effects of Locations and Planting dates on Disease Occurrence and Germination Rate of Seeds in Vegetable Soybean (재배지역 및 파종기가 풋콩종실의 발병정도 및 발아율에 미치는 영향)

  • Kim, Hong-Sig;Hong, Eun-Hi;Kim, Seok-Dong;Ryu, Yong-Hwan
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.41 no.2
    • /
    • pp.178-187
    • /
    • 1996
  • This study was conducted to obtain the basic informations for producing high quality seeds of vegetable soybeans. Four vegetable soybean cultivars, 'Okharawase', 'Mikawashima', 'Hwaeomputkong', and 'Seokryangputkong' were planted at four locations, Chulwon(altitude, 192m) and Pyeongchang(altitude, 370m) in highland, and Suwon(altitude, 37m)and Daegu(altitude, 55m) in lowland of Korea with two planting dates, May 15 and June 15. Seed infection rates were attributed by in order of phomopsis seed decay caused by Phomopsis spp., seed mottling caused by soybean mosaic virus (SMV), purple seed stain caused by Cercospora kikuchii. Seed infectron rate was the lowest at Pyeongchang and lower on June 15 than on May 15 planting. Phomopsis seed decay by Phomopsis spp. was lower in highland of Korea, Pyeongchang and Chulwon, than in lowland of Korea, Suwon and Daegu. Seed infection rate was also lower on June 15 planting than on May 15, and in seeds harvested at maturity than at ten days after maturity. Germination rate of seeds harvested in highland, Pyeongchang and Chulwon, after six to seven month storage at 5$\pm$1$^{\circ}C$ was more than 90% and higher than that of the seeds in lowland, Suwon and Daegu. Germination rate was also higher on June 15 than on May 15 planting.

  • PDF

Effect of Altitude and Tuber Weight on the Growth and Yield of Pinellia ternata (Thunb.) Breit (해발고도별 반하 종구 무게가 생육 및 수량에 미치는 영향)

  • Oh, Han Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.21 no.2
    • /
    • pp.130-135
    • /
    • 2013
  • The plant growth and yield of Pinellia ternata (Thunb.) Breit. were studied by altitude and tuber weight. The emergence rates in low land area were not different by tuber weights, but it showed earlier emergence date in heavier weight of seed-tuber and low land area. The higher aerial growth such as plant height and number of leaves per plant was the heavier tuber weight in a planting year, but the growth was not different by the weight of tuber at second year after planting. The distribution pattern of tuber size per $m^2$ was not influenced by different seed-tuber weight. The number of harvested tuber was highest at more than 1 g of tuber weight, and followed 1~2 g and less than 2 g. The distribution pattern of fresh tuber yield was not influenced by different altitude and seed-tuber weight. The marketable tuber, 2 g or more, tends to be produced with more than 0.6 g seed-tuber. As the results above-mentioned, it was thought that the high yield was supposed to use seed-tuber over 0.6 g in the fertile soil.

Effect of Planting Date and Cultivation Method on Soybean Growth in Paddy Field (파종기와 재배방법에 따른 논 재배 콩의 품종별 생장분석)

  • Cho Joon-Hyeong
    • Korean Journal of Organic Agriculture
    • /
    • v.14 no.2
    • /
    • pp.191-204
    • /
    • 2006
  • This study was conducted to identify the effect of planting date and cultivation method on soybean growth and yield in paddy field. The plant height of soybeans in single cropping(SC) was higher than those in cultivating after barley culture (CB). Considering planting date and cultivation method, plant height tend to be higher in SC with level row cultivation(LR) and in CB with high ridge cultivation(HR). In this SC method, nodule formation in LR was better than in HR, but number of nodules of cv. Hwangkeumkong was highest, regardless of planting date and cultivation method. In the progress of growth stage, leaf areas of all cultivars were distinctively increased in CB than in SC. However, dry weight of top plants and roots in SC was comparably higher than that in CB due to growing periods of the soybeans. In cultivation methods, general type of dry weight of top plants was higher in LR than in HR, however, root dry weight was via verses. Growth responses varied depending on cultivars, cultivation methods, and planting date and these factors affected to shoot root (T/R) ratio. The T/R ratios in LR and SC were higher than those in HR and CB. In R8 stage, number of pods and ripened seed varied depending on cultivars. cv. Hwaeomputkong, which showed early maturing trait, was lowest. However, both yield factors tended to be higher in HR and CB than in LR and SC. The ratios of ripened seeds percentage of cv. Hwangkeumkong and cv. Eunhakong were higher in CB than in SC. However, yields of cv. Daewonkon and cv. Taekwangkong were higher in CB than in SC.

  • PDF