• Title/Summary/Keyword: seed inoculation

Search Result 126, Processing Time 0.037 seconds

Disinfection of Seed Borne Black Leg Disease(Phoma wasabiae) in Wasabi(Wasabia japonica Matsum.) (고추냉이 먹들이병(Phoma wasabiae)의 종자소독 효과)

  • Moon, Jung-Seob;Kim, Hyung-Moo;Choi, Dong-Chil;Hong, Yoon-Ki;Sung, Moon-Ho;Jang, Young-Jik;Go, Bok-Rae;Oh, Nam-Ki;Choi, Yeong-Geun
    • Journal of Bio-Environment Control
    • /
    • v.12 no.4
    • /
    • pp.180-183
    • /
    • 2003
  • P. wasabiae was isolated from discolored seeds of wasabi(Wasabia japonical Mtsum.) and inoculated to fresh seeds, then the effect of fungicides on suppression of diseases were determined. Emergence rate of wasabi seeds where suppressed to 52.5% by the inoculation and it reached up to 92.7% by dipping treatment of inoculated seeds ito benomyl solution. The incidence rate of black leg disease and damping off were 32.0 and 22.0%, respectively, in control treatment that sown in the soil inoculated with P. wasabiae. But dipping treatment of inoculated seeds into benomyl solution resulted in 12.0% and 10.7% in incidence rate of those two diseases, respectively.

Seed-born Burkholderia glumae Infects Rice Seedling and Maintains Bacterial Population during Vegetative and Reproductive Growth Stage

  • Pedraza, Luz Adriana;Bautista, Jessica;Uribe-Velez, Daniel
    • The Plant Pathology Journal
    • /
    • v.34 no.5
    • /
    • pp.393-402
    • /
    • 2018
  • Rice world production is affected due to the growing impact of diseases such as bacterial panicle blight, produced by Burkholderia glumae. The pathogen-induced symptoms include seedling rot, grain rot and leafsheath browning in rice plants. It is currently recognized the entrance of this pathogen to the plant, from infected seeds and from environmental sources of the microorganism. However, it is still not fully elucidated the dynamics and permanence of the pathogen in the plant, from its entry until the development of disease symptoms in seedlings or panicles. In this work it was evaluated the infection of B. glumae rice plants, starting from inoculated seeds and substrates, and its subsequent monitoring after infection. Various organs of the plant during the vegetative stage and until the beginning of the reproductive stage, were evaluated. In both inoculation models, the bacteria was maintained in the plant as an endophyte between $1{\times}10^1$ and $1{\times}10^5cfu$ of B. $glumae.g^{-1}$ of plant throughout the vegetative stage. An increase of bacterial population towards initiation of the panicle was observed, and in the maturity of the grain, an endophyte population was identified in the flag leaf at $1{\times}10^6cfu$ of B. $glumae.g^{-1}$ fresh weight of rice plant, conducting towards the symptoms of bacterial panicle blight. The results found, suggest that B. glumae in rice plants developed from infected seeds or from the substrate, can colonize seedlings, establishing and maintaining a bacterial population over time, using rice plants as habitat to survive endophyticly until formation of bacterial panicle blight symptoms.

Optimization of Culture Conditions for the Bioconversion of Vitamin $D_3\;to\;1{\alpha}$,25-Dihydroxyvitamin $D_3$ Using Pseudonocardia autotrophica ID9302

  • Kang, Dae-Jung;Lee, Hong-Sub;Park, Joon-Tae;Bang, Ji-Sun;Hong, Soon-Kwang;Kim, Tae-Yong
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.5
    • /
    • pp.408-413
    • /
    • 2006
  • We assessed the ability of a Pseudonocardia sp. from soil samples to bioconvert vitamin $D_3$. The optimal culture conditions for the bioconversion of vitamin $D_3$ to active $1{\alpha}$,25-dihydroxyvitamin $D_3$ were investigated by varying the carbon and nitrogen sources, the metal salt concentrations, the initial pH, and the temperature. Microbial transformations were carried out with the addition of vitamin $D_3$ dissolved in ethanol. They were sampled by extraction with methanol-dichloromethane and the samples were examined by HPLC. Optimum culture conditions were found to be 0.4% yeast extract, 1% glucose, 3% starch, 1% fish meal, 0.2% NaCl, 0.01% $K_2HPO_4$, 0.2% $CaCO_3$, 0.01% NaF, and pH 7.0 at $28^{\circ}C$. The optimal timing of the addition of vitamin $D_3$ for the production of calcitriol by Pseudonocardia autotrophica ID9302 was concurrent with the inoculation of seed culture broth. Maximum calcitriol productivity and the yield of bioconversion reached a value of 10.4mg/L and 10.4% respectively on the 7th day in a 75L fementer jar under the above conditions.

Bacillus spp. as Biocontrol Agents of Root Rot and Phytophthora Blight on Ginseng

  • Bae, Yeoung-Seuk;Park, Kyungseok;Kim, Choong-Hoe
    • The Plant Pathology Journal
    • /
    • v.20 no.1
    • /
    • pp.63-66
    • /
    • 2004
  • Ginseng (Panax ginseng) is one of the most widely cultivated medicinal herbs in Korea. However, yield losses reached up to 30-60% due to various diseases during 3 or 5 years of ginseng cultivation in the country. Therefore, successful production of ginseng roots depends primarily on the control of diseases. The objective of this study was to select potential biocontrol agents from rhizobacteria isolated from various plant internal root tissues for the control of multiple ginseng diseases as an alternative to fungicides. Among 106 Bacillus strains, two promising biocontrol agents, Bacillus pumilus strain B1141 and Paenibacillus lentimobus strain B1146, were selected by screening against root rot of ginseng caused by Cylindrocarpon destructans in a greenhouse. Pre-inoculation of selected isolates to seed or l-year-old root of ginseng resulted in stimulation of shoot and/or root growth of seedlings, and successfully controlled root rot caused by C. destructans (P<0.05). Furthermore, drenching of cell suspension of the selected isolates on seedling-growing pots reduced the incidence of Phytophthora blight after the seedlings were challenged with zoospores of Phytophthora cactorum (P<0.05). P. lentimorbus strain B1146 showed antifungal activity against various soil-borne pathogens in vitro, while B. pumilus strain B1141 did not show any. Results of this study suggest that some rhizobacteria can induce resistance against various plant diseases on ginseng.

Effect of Timing of IPTG Addition on Expression of Turnip Mosaic Virus Coat Protein Gene in Escherichia Coli (IPTG의 첨가 시간이 대장균(Escherichia coli)에서 순무 모자이크 바이러스(TuMV)의 외피단백질 발현에 미치는 영향)

  • Kim, Su-Joong;Park, Won-Mok;Ryu, Ki-Hyun;Lee, Sang-Seon;Lee, Se-Yong
    • Korean Journal Plant Pathology
    • /
    • v.13 no.4
    • /
    • pp.248-254
    • /
    • 1997
  • Expression vector (pGEX-Tu) for the coat protein (CP) gene of turnip mosaic virus Ca strain (TuMV-Ca) was constructed by incorporation of TuMV CP gene into pGEX-KG vector which had ${\beta}$-galactosidase gene and IPTG (isopropylthio-${\beta}$-D-galactoside) induction site. The results of ELISA and western hybridization indicated that optimal condition of the expression were when IPTG and western hybridization indicated that optimal condition of the expression were when IPTG induction was carried out on YTA medium with ampicillin in 2 hours after the E. coli seed inoculation ($A_{595}$=0.1/ml). TuMV CP gene was expressed with GST (Glutathion S-Transferase) gene fusion system, and the size of fusion protein was estimated to be 59kDa, for TuMV CP was 33 kDa and GST was 26 kDa.

  • PDF

Identification of Fusarium fujikuroi Isolated from Barnyard Grass and Possibility of Inoculum Source of Bakanae Disease on Rice (피에서 분리한 Fusarium fujikuroi의 동정 및 벼 키다리병의 전염원 가능성)

  • Choi, Hyo-Won;Lee, Yong-Hwan;Hong, Sung-Kee;Kim, Wan-Gyu;Lee, Young-Kee;Chun, Se-Chul
    • Research in Plant Disease
    • /
    • v.17 no.1
    • /
    • pp.82-85
    • /
    • 2011
  • Bakanae disease symptom were observed in barnyard grass in paddy field in Heanam, Jeonnam. The infected plants were blighted and white mass of spore were formed on the stem. Fusarium species were isolated from infected stem and the isolates were identified as Fusarium fujikuroi based on their morphological and molecular characteristics. The isolates of F. fujikuroi were assigned to reference of F. fujikuroi among related Fusarium species based on the translation elongation factor 1-alpha gene sequence. Pathogenicity of the fungal isolates was confirmed on seedlings of rice and barnyard grass by artificial inoculation. The results indicated that barnyard grass can be inoculum source of Bakanae disease on rice. Thus, effective weed management is necessary to Bakanae disease control and healthy seed production.

Assessment of the Soybean Yield Reduction due to Infection of Septoria Brown Spot, Septoria glycines Hemmi (대두 갈색무늬병에 의한 수량감소의 평가)

  • Oh Jeung Haing;Kwon Shin Han
    • Korean journal of applied entomology
    • /
    • v.22 no.1 s.54
    • /
    • pp.7-14
    • /
    • 1983
  • Septoria brown spot closed by Septoria glycines is one of the most serious fungal diseases in soybean. Average yield reduction of 3 varieties for two years was $16.1\%$ by the septoria brown spot inoculation and $9.0\%$ by the natural infection as compared to fungicide-sprayed plots. Number of pods per plant and seed weight were significantly reduced while plant height, number of branches and number of nodes per plant were not affected. Yield reduction was positively correlated to the septoria brown spot severity in all varieties examined. Correlation coefficient $(r=0.38^*)$ between yield reduction and area under the disease progress curve was higher than that (r=0.156) between yield reduction and Van der Plank's apparent infection rate. Potential effect of the septoria brown spot on the soybean yield reduction estimated with the area under the disease progress curve was expressed by the equation of Y=4.38+0.05X $(r=0.0696^*,\;df=25)$.

  • PDF

Plant Growth Substances Produced by Methylobacterium spp. and Their Effect on Tomato (Lycopersicon esculentum L.) and Red Pepper (Capsicum annuum L.) Growth

  • Ryu, Jeong-Hyun;Madhaiyan, Munusamy;Poonguzhali, Selvaraj;Yim, Woo-Jong;Indiragandhi, Pandiyan;Kim, Kyoung-A;Anandham, Rangasamy;Yun, Jong-Chul;Kim, Kye-Hoon;Sa, Tongmin
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.10
    • /
    • pp.1622-1628
    • /
    • 2006
  • Bacteria from the Methylobacterium genus, called pink-pigmented facultative methylotrophic bacteria (PPFMs), are common inhabitants of plants, potentially dominating the phyllosphere population, and are also encountered in the rhizosphere, seeds, and other parts of plants, being versatile in nature. The consistent success of the Methylobacterium plant association relies on methylotrophy, the ability to utilize the one-carbon compound methanol emitted by plants. However, the efficiency of Methylobacterium in plant growth promotion could be better exploited and thus has attracted increasing interest in recent years. Accordingly, the present study investigated the inoculation effects of Methylobacterium sp. strains CBMB20 and CBMB 110 on seed imbibition to tomato and red pepper on the growth and accumulation of phytohormone levels under gnotobiotic conditions. Seeds treated with the Methylobacterium strains showed a significant increase in root length when compared with either the uninoculated control or Methylobacterium extorquens $miaA^-$ knockout mutanttreated seeds. Extracts of the plant samples were used for indole-3-acetic acid (IAA), trans-zeatin riboside (t-ZR), and dihydrozeatin riboside (DHZR) assays by immunoanalysis. The treatment with Methylobacterium sp. CBMB20 or CBMB 110 produced significant increases in the accumulation of IAA and the cytokinins t-ZR and DHZR in the red pepper extracts, whereas no IAA was detected in the tomato extracts, although the cytokinin concentrations were significantly increased. Therefore, this study proved that the versatility of Methylobacterium as a plant-growth promoting bacteria could be better exploited.

Pathogenicity of a sclerotia-forming fungus, Sclerotinia trifoliorum BWC98-105, to burcucumber (Sicyos angulatus) (균핵형성균 Sclerotinia trifoliorum BWC98-105의 가시박에 대한 병원성)

  • Kim, Dalsoo;Lee, Jaeho;Choi, Woobong;Hwang, Changil;Cho, Namgyu;Choi, Sang-Bong
    • Research in Plant Disease
    • /
    • v.25 no.1
    • /
    • pp.29-32
    • /
    • 2019
  • Burcucumber (Sicyos angluatus) is a representative ecosystem-disturbing plant in Korea and currently widely spread throughout the country. A sclerotia-forming fungus with moderate host selectivity, Sclerotinia trifoliorum BWC98-105, was tested in the laboratory, green house and natural habitat for its pathogenicity to burcucumber. When mycelial culture fragment was inoculated to burcucumber seedlings under the green house condition, mycelial growth was observed in the following day, and then resulted in the onset of wilting from 5 days after inoculation (DAI). Its characteristic sclerotia as a sign was observed from 7 DAI, and thus plants turned into dark-brown color at the bottom of stem of burcucumber that was eventually blighted at 14 DAI. Similar visible symptoms were observed in natural habitat. Based on the results of showing typical blight symptom to burcucumber and the sign of sclerotia, we report S. trifoliorum BWC98-105 causing stem blight against burcucumber. Its globular pellet was considered of having quite potential as a bioherbicide to control burcucumber in Korea.

Black Mold on Tomato Fruits Caused by Alternaria alternata in Korea (한국 내 Alternaria alternata에 의한 토마토 과실 검은곰팡이병)

  • Kim, Wan-Gyu;Ryu, Jae-Taek;Choi, Hyo-Won
    • The Korean Journal of Mycology
    • /
    • v.48 no.4
    • /
    • pp.369-379
    • /
    • 2020
  • Black mold was frequently observed on tomatoes grown in a greenhouse in Suwon, Korea in July 2018. The incidence of the disease was 5.0-25.0% (average 12.3%) and 2.0-7.0% (average 3.7%) in the context of tomato and cherry tomato fruits, respectively. Sixteen single-spore isolates of Alternaria sp. were obtained from the diseased fruits and investigated for their morphological characteristics. Among the isolates, eight were used for sequencing analysis. All of the isolates were identified as Alternaria alternata based on their morphological and molecular characteristics. The pathogenicity of four isolates of A. alternata was investigated using three varieties each of tomato and cherry tomato via artificial inoculation. All of the isolates induced black mold symptoms on the inoculated tomato fruits. Notably, the symptoms were similar to those observed in the greenhouse. However, the pathogenicity tests revealed that different tomato varieties presented distinct patterns of susceptibility to the isolates. This is the first report of A. alternata causing black mold on tomato fruits in Korea.