• Title/Summary/Keyword: sediment-runoff yield

Search Result 65, Processing Time 0.022 seconds

Simulation of generable muddy water quantity and pollutant loads in sloping field using artificial rainfall simulator (실내인공강우기를 이용한 경사지 밭의 토양유실량과 오염부하 모의)

  • Shin, Min-Hwan;Choi, Yong-Hun;Seo, Ji-Yeon;Lee, Jae-Woon;Choi, Joong-Dae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2009.05a
    • /
    • pp.986-990
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as most cause of muddy water problem among Non-point source(NPS) pollutant, was studied by the analysis of direct runoff flow, groundwater runoff, and groundwater storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared boxes which are 5%, 10%, and 20% sloped respectively. Also the direct runoff volume from straw covered surface boxes were much lower than bared surface boxes. It's deemed as that the infiltration capacity of straw covered surface boxes were increased, because the surface sealing by fine material of soil surface didn't occurred due to the straw covering. Under the same rainfall intensity and slope condition, 2.4 ${\sim}$ 8.2 times of sediment yield were occurred from bared surface boxes more than straw covered surface boxes. The volume of infiltrated were increased due to straw cover, the direct runoff flow were decreased with decreasing of tractive force in surface. To understand of relationship the rate of direct runoff flow, groundwater runoff, and groundwater storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, expect between the rate of groundwater storage and rainfall intensity.

  • PDF

The evaluation of SDR of Yongdam basin using GIS data (GIS 자료를 이용한 용담호 유역의 유사전달률 평가)

  • Lee, Geun-Sang;Kim, Yu-Ri;Hwang, Eui-Ho;Lee, Gwang-Man
    • Proceedings of the Korean Association of Geographic Inforamtion Studies Conference
    • /
    • 2009.04a
    • /
    • pp.269-270
    • /
    • 2009
  • This study builds a sediment rating curve using the measured sediment yield and the simulated soil erosion by a GIS-embedded empirical model. Then the structured sediment rating curve is used to determine the SDR on a basin scale in southern Korea. The whole data(year of 2002-2008) are divided into two groups and the first group(year of 2002-2005) is used for calibration, while the other is used for validation. Two cases(rainfall amount and rainfall intensity) are analyzed to consider the rainfall runoff erosivity factor in simulating soil erosion. The results show the derived SDR provides reasonable accuracy and rainfall intensity gives better performance in calculating soil erosion than rainfall amount.

  • PDF

Evaluation of SWAT Applicability to Simulate Soil Erosion at Highland Agricultural Lands (고랭지 농경지의 토양유실모의를 위한 SWAT 모형의 적용성 평가)

  • Heo, Sung-Gu;Kim, Ki-Sung;Sa, Gong-Myong;Ahn, Jce-Hun;Lim, Kyoung-Jae
    • Journal of Korean Society of Rural Planning
    • /
    • v.11 no.4 s.29
    • /
    • pp.67-74
    • /
    • 2005
  • The Doam watershed is located at alpine areas and the annual average precipitation, including snow accumulation, is significant higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. Also, extremely torrential rainfall, such as the typhoons 'RUSA' in 2002 and 'MAEMI' in 2003, caused significant amounts of soil erosion and sediment at the Doam watershed. However, the USLE model cannot simulate impacts on soil erosion of freezing and thaw of the soil. It cannot estimate sediment yield from a single torrential rainfall event. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The R$^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it is found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Two typhoons in 2002 and 2003, MAEMI and RUSA, caused 33% and 22% of total sediment yields at the Doam watershed, respectively. Thus, it is recommended that the SWAT model, capable of simulating snow melt, sediment yield from a single storm event, and long-term weather data, needs to be used in estimating soil erosion at alpine agricultural areas to develop successful soil erosion management instead of the USLE.

Evaluating the Performance of APEX-Paddy Model using the Monitoring Data of Paddy Fields in Iksan, South Korea (국내 논필지 모니터링 자료를 이용한 APEX-Paddy 모델 적용성 평가)

  • Kamruzzaman, Mohammad;Cho, Jaepil;Choi, Soon-Kun;Song, Jung-Hun;Song, Inhong;Hwang, Syewoon
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.62 no.1
    • /
    • pp.1-16
    • /
    • 2020
  • The APEX model has been developed for assessing agricultural management efforts and their effects on soil and water at the field scale as well as more complex multi-subarea landscapes, whole farms, and watersheds. Recently, a key component of APEX application, named APEX-Paddy, has been modified for simulating water quality by considering paddy rice management practices. In this study, the performance of the APEX-Paddy model was evaluated using field data at Iksan experimental paddy sites in Korea. The discharge and pollutant load data during 2013 and 2014 were used to both manually and automatically calibrate the model. The APEX auto-calibration tool (APEX-CUTE 4.1) was used for model calibration and sensitivity analysis. Results indicate that APEX-Paddy reasonably performs in predicting runoff discharge rate and nitrogen yield. However, sediment and phosphorus yield is not correctly predicted due to the limitation of model schemes. With APEX-Paddy, the performance in reproducing the discharge and nitrogen yield is found to be a satisfactory level after manual calibration. The manually calibrated model performed better than the automatically calibrated model in nearly all comparisons. For runoff, manual calibration reduced PBIAS while R2 and NSE values of the automatically calibrated model were the same as the manual calibration. For T-N, NSE and PBIAS were reduced when using manual calibration, whereas R2 value was the same as manual calibration. The limitation of the APEX-Paddy model for predicting sediment, as well as the phosphorous yield, was discussed in this study.

A STUDY ON EROSION (CAUSES AND REMEDIES) BASED ON HYDROLOGICAL DATA

  • K.M. Ibe, Sr;H. Krynen
    • Water Engineering Research
    • /
    • v.2 no.4
    • /
    • pp.269-276
    • /
    • 2001
  • The project concentrates on an hydrological analysis. The analysis consists of rainfall, infiltration, Determination of runoff and sediment yield. The risque of erosion and the control measures are related to the slopes and land use. Therefore the first approach to erosion must be correct land use based on land classification. Basically there are two types of mechanical protection works; Drainage and Storage. Realization of a drainage system will be very costly and therefore temporary storage is preferred. For farmland in flat areas hardly any measures are needed. For farmland on slopes temporary storage can be effected by applying tillage with ridges within contour bunds. Along roads infiltration pits should be constructed and in areas with houses, the solution to avoid runoff will be water harvesting.

  • PDF

Simulation of Field Soil Loss by Artificial Rainfall Simulator - By Varing Rainfall Intensity, Surface Condition and Slope - (인공강우기에 의한 시험포장 토양유실량 모의 - 강우강도, 지표면 및 경사조건 변화 -)

  • Shin, Minhwan;Won, Chul-hee;Choi, Yong-hun;Seo, Jiyeon;Lee, Jaewoon;Lim, KyoungJae;Choi, Joong-dae
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.5
    • /
    • pp.785-791
    • /
    • 2009
  • Using artificial rainfall simulator, the soil loss, which is deemed as the most cause of muddy water problem among Non-point source (NPS) pollutant, was studied by the analysis of direct runoff, groundwater discharge, and soil water storage properties concerned with rainfall intensity, slope of area, and land cover. The direct runoff showed increasing tendency in both straw covered and bared soil as slope increases from 5% to 20%. The direct runoff volume from straw covered surface were much lower than bared surface. The infiltration capacity of straw covered surface increased, because the surface sealing by fine material of soil surface didn't occur due to the straw covering. Under the same rainfall intensity and slope condition, 2.4~8.2 times of sediment yield were occurred from bared surface more than straw covered surface. The volume of infiltration increased due to straw cover and the direct runoff flow decreased with decrease of tractive force in surface. To understand the relationship of the rate of direct runoff, groundwater discharge, and soil water storage by the rainfall intensity, slope, and land cover, the statistical test was performed. It shows good relationship between most of factors, except between the rate of groundwater storage and rainfall intensity.

Simulation of Soil Erosion due to Snow Melt at Alpine Agricultural Lands (고령지 농경지에서 융설에 의한 토양유실량 모의)

  • Heo, Sung-Gu;Lim, Kyoung-Jae;Kim, Ki-Sung;Myung, SaGong;An, Jae-Hun
    • Proceedings of the Korean Society of Agricultural Engineers Conference
    • /
    • 2005.10a
    • /
    • pp.241-246
    • /
    • 2005
  • Doam watershed is located at alpine areas in the Kangwon province. The annual average precipitation, including snow accumulation during the winter, at the Doam watershed is significantly higher than other areas. Thus, pollutant laden runoff and sediment discharge from the alpine agricultural fields are causing water quality degradation at the Doam watershed. To estimate soil erosion from the agricultural fields, the Universal Soil Loss Equation (USLE) has been widely used because of its simplicity to use. The USLE rainfall erosivity (R) factor is responsible for impacts of rainfall on soil erosion. Thus, use of constant R factor for the Doam watershed cannot reflect variations in precipitation patterns, consequently soil erosion estimation. In the early spring at the Doam watershed, the stream flow increases because of snow melt, which results in erosion of loosened soil experiencing freezing and thaw during the winter. However, the USLE model cannot consider the impacts on soil erosion of freezing and thaw of the soil. Also, it cannot simulate temporal changes in USLE input parameters. Thus, the Soil and Water Assessment Tool (SWAT) model was investigated for its applicability to estimate soil erosion at the Doam watershed, instead of the widely used USLE model. The SWAT hydrology and erosion/sediment components were validated after calibration of the hydrologic component. The $R^2$ and Nash-Sutcliffe coefficient values are higher enough, thus it was found the SWAT model can be efficiently used to simulate hydrology and sediment yield at the Doam watershed. The effects of snow melt on SWAT estimated stream flow and sediment were investigated using long-term precipitation and temperature data at the Doam watershed. It was found significant amount of flow and sediment in the spring are contributed by melting snow accumulated during the winter. Thus, it is recommend that the SWAT model capable of simulating snow melt and long-term weather data needs to be used in estimating soil erosion at alpine agricultural land instead of the USLE model for successful soil erosion management at the Doam watershed.

  • PDF

Applying Evaluation of Soil Erosion Models for Burnt Hillslopes - RUSLE, WEPP and SEMMA (산불사면에 대한 토양침식모형의 적용 평가 - RUSLE, WEPP, SEMMA)

  • Park, Sang Deog;Shin, Seung Sook
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.31 no.3B
    • /
    • pp.221-232
    • /
    • 2011
  • Applicability of three soil erosion models for burnt hillslopes was evaluated. The models were estimated with the data from plots established after tremendous wildfire occurred in the east coastal region. Soil erosion and surface runoff were simulated by the Water Erosion Prediction Project (WEPP) and the Revised Universal Soil Loss Equation (RUSLE) of application mode for disturbed forest areas and the Soil Erosion Model for Mountain Areas (SEMMA) developed for burnt hillslopes. Simulated sediment yield and surface runoff were compared with the measured those. In maximum value of sediment yield, three models was under-predicted and RUSLE and WEPP had difference of over two times. SEMMA showed the best model response coefficient, determination coefficient and the model efficiency. In application of models to the soil erosion according to the elapsed year after wildfire, all models were underestimated in initial stage disturbed by wildfire. Evaluation of models in this burnt hillslopes was shown the tends to under-predict soil erosion for larger measured values. Although a lot of sediment can be generated in small rainfall event as fine-grained soil of the high water repellency was exposed excessively right after wildfire, this under-prediction was shown that those models have a limit to estimate the weighted factors by wildfire.

Analysis of NPS Pollution reduction from No-till Field (무경운 밭에서의 비점오염물질 저감효과 분석)

  • Lee, Su In;Won, Chul Hee;Shin, Min Hwan;Shin, Jae Young;Jeon, Je Hong;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.57 no.4
    • /
    • pp.51-59
    • /
    • 2015
  • Various Best Management Practices (BMPs) have been suggested to reduce soil erosion and non point source (NPS) pollutant loads from agricultural fields. However, very little research regarding water quality improvement with No-till (NT) has been performed in Korea. Thus, effects of NT were investigated in this study. The objective of the study was to investigate the effect of NT on the surface runoff and sediment discharge in a field. Eight experimental plots of $5{\times}30m$ in size and 3 % or 8 % in slope prepared on gravelly sandy loam soil were treated with Conventional-till (CT) and NT. Runoff and NPS pollution discharge were monitored and compared the treatments. The amounts of rainfall from 13 monitored events ranged from 28.7 mm to 503.5 mm. The runoff amount was reduced by 17.6~59.2 % in 3 % NT and 29.6~53.2 % in 8 % NT. The average NPS pollution loads of the 3 % NT plots and 8 % NT plot were reduced about 45.1~89.2 % and 47.7~98.0 % compared to those of the CT plots, respectively. This research revealed that NT can reduce the NPS pollution loads substantially as well as increase the crop yield. Runoff and NPS pollution loads reduction by NT method could be contribute to improve the water quality of streams in agricultural regions.

Application of Surface Cover Materials and Soil Amendments for Reduction of Non-Point Source Pollution from Upland Fields (배추와 무밭에서 발생하는 비점오염원 저감을 위한 피복재와 토양개량제 적용)

  • Shin, Min Hwan;Jang, Jeong Ryeol;Shin, Hyun Jun;Kum, Dong Hyuk;Choi, Yong Hun;Won, Chul Hee;Lim, Kyoung Jae;Choi, Joong Dae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.55 no.4
    • /
    • pp.21-28
    • /
    • 2013
  • The objective of the study was to investigate the effect of rice straw mat, rice straw mat with PAM (Polyacrylamide) and gypsum addition on surface runoff and sediment discharge in field. Six experimental plots of $5{\times}22m$ in size and 3 % in slope prepared on gravelly sandy loam soil were treated with control, rice straw mat cover with gypsum and rice straw mat cover with gypsum and PAM. Radish in Spring and Chinese cabbage in autumn growing seasons were cultivated. Non point source (NPS) pollution discharge was monitored and compared among the treatments. Rainfall of the 10 monitored events ranged from 17.0 mm to 93.5 mm. Runoff coefficient of the events was 0.005~0.239 in control plot, 0~0.176 in rice straw plot with gypsum and 0~0.046 in rice straw mat plot with gypsum and PAM. When compared to the control plot, the runoff amount was reduced by 10.4~100 % (Ave. 60.8) in rice straw plot with gypsum and 80.7~100 % (Ave. 96.7 %) in rice straw mat plot with gypsum and PAM. The reduction of NPS pollution load was 54.6 % for BOD5, 71.5 % for SS, 41.6 % for TN and 61.4 % for T-P in rice straw with gypsum plot and 91.9 % for BOD5, 92.0 % for SS, 88.0 % for TN and 88.5 % for T-P in rice straw mat with gypsum and PAM plot. This research revealed that rice straw mat cover with soil amendments on the soil surface could not only increase the crop yield but also reduce the NPS pollution loads substantially.