• Title/Summary/Keyword: sediment yields

Search Result 67, Processing Time 0.043 seconds

Impacts on Water Quality to an Artificial Lake Due to Sudden Disturbance of Sediments (급격한 저니토 교란이 인공 하구호 수질에 미치는 영향)

  • 서승원;김정훈
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.15 no.1
    • /
    • pp.39-50
    • /
    • 2003
  • This study aims to figure out water quality impacts due to sudden disturbances of sediments during dike construction in land reclamation for the northern part of the Siwhaho Lake where heavily deteriorated settlements from upstream loadings are outstanding. We exploit a 3-D water quality model CE-QUAL-ICM combined with a hydrodynamic model TIDE3D. Simulations are done accounting water-sediment interaction in a 4-$\sigma$ layers. Long-term simulation for 1-year shows that bottom layers around the disturbance location are only affected and marks very high concentration. Complete vertical mixing appears at least 5km apart to downward due to complex effects of geometry, bathymetry and river inflows. It should be addressed that existing condition of the Siwhaho Lake stands for high concentration of COD and TP in winter and spring due to relatively high incoming loadings, however the effect of sediment disturbances yields reverse phenomena, i.e., impacts of dike construction arise greatly in summer and fall. Refined grid system consisting of 150m${\times}$150m rectangular grid, which is doubled system compared to previous study (Suh et al.,2002), gives affordable results by reducing flux differences through a cell especially in front of gate.

Parameter Sensitivity Analysis of SWAT Model for Prediction of Pollutants Fate in Joman River Basin (조만강 유역의 오염물질 거동 예측을 위한 SWAT 모형의 매개변수 민감도 분석)

  • Kang, Deok-Ho;Kim, Tae-Won;Kim, Young-Do;Kwon, Jae-Hyun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.787-790
    • /
    • 2008
  • The SWAT(Soil and Water Assesment Tool) is a relatively large scale model for the complicated watershed or river basin. The model was developed to predict the effect of land management practices on water, sediment and agricultural chemical yields in large complex watershed with varying soils, land use and management conditions over long periods of time. Usually streams are divided into urban stream and natural stream in accordance with the development level. In case of urban stream, according to urbanization, as impermeable areas are increasing due to the change of land use condition and land cover condition, dry stream phenomenon at urban stream is rapidly progressed. In this study, long term run-off simulations in urban stream are performed by using SWAT model. Especially, the model is applied in small scale water shed, Joman River basin. The optimization by the sensitivity analysis is also performed for the model parameter estimations.

  • PDF

Determination of trace actinide (Am, Pu, Th, U) using alpha spectrometry and neutron activation analysis (알파분광법과 중성자방사화분석법에 의한 극미량의 악티늄계원소 (Am, Pu, Th, U)분석연구)

  • Yoon, Yoon Yeol;Lee, Kil Yong;Cho, Soo Young;Kim, Yongjai;Lee, Myong Ho
    • Analytical Science and Technology
    • /
    • v.17 no.4
    • /
    • pp.302-307
    • /
    • 2004
  • Determination of actinides in the environmental sample requires separation of each element. This procedure is tedious and time consuming. And also, the detection limits of some nuclides using alpha spectrometry are rather higher. To overcome the lower detection limit and complicated separation procedure, a simple analytical technique for the determination of actinide isotopes in the environmental samples was developed and applied to IAEA and NIST reference sediment samples. For the separation of actinides from matrix, anion exchange resin and TRU-spec extraction chromatography resin were used and chemical yields were obtained using natural uranium, thorium, $^{242}Pu$ and $^{243}Am$ tracers. For overcoming the higher detection limits of U and Th in alpha spectrometry, neutron activation analysis was applied. Using combined method, the detection limit was increased about 10 times. The activity values of each isotope were consistent with the reference values reported by IAEA and NIST.

Estimating the shear velocity profile of Quaternary silts using microtremor array (SPAC) measurements (Microtremor 배열 (SPAC) 측정을 이용한 제4기 실트층의 S파 속도구조 추정)

  • Roberts James;Asten Michael
    • Geophysics and Geophysical Exploration
    • /
    • v.8 no.1
    • /
    • pp.34-40
    • /
    • 2005
  • We have used the microtremor method, with arrays of up to 96 m diameter, to carry out non-invasive estimation of shear-wave velocity profiles to a depth of 30 to 50 m in unconsolidated Quaternary Yarra Delta sediments. Two silt units (Coode Island Silt, and Fishermans Bend Silt) dominate our interpretation; the method yields shear velocities for these units with precision of $5\%$, and differentiates between the former, softer unit ($V_s$=130 m/sec) and the latter, firmer unit ($V_s$=235 m/sec). Below these silts, the method resolves a firm unit correlating with known gravels ($V_s$ 500 to 650 m/sec). Using surface traverses with the single-station H/V spectral ratio method, we show that the variation in thickness of the softer silt can be mapped rapidly but only qualitatively. The complexity of the geological section requires that array methods be used when quantitative shear-wave velocity profiles are desired.

Inverse Estimation of Geoacoustic Parameters in Shallow Water Using tight Bulb Sound Source (천해환경에서 전구음원을 이용한 지음향인자의 역추정)

  • 한주영;이성욱;나정열;김성일
    • The Journal of the Acoustical Society of Korea
    • /
    • v.23 no.1
    • /
    • pp.8-16
    • /
    • 2004
  • An inversion method is presented for the determination of the compressional wave speed, compressional wave attenuation, thickness of the sediment layer and density as a function of depth for a horizontally stratified ocean bottom. An experiment for estimating those properties was conducted in the shallow water of South Sea in Korea. In the experiment, a light bulb implosion and the propagating sound were measured using a VLA (vertical line array). As a method for estimating the geoacoustic properties, a coherent broadband matched field processing combined with Genetic Algorithm was employed. When a time-dependent signal is very short, the Fourier transform results are not accurate, since the frequency components are not locatable in time and the windowed Fourier transform is limited by the length of the window. However, it is possible to do this using the wavelet transform a transform that yields a time-frequency representation of a signal. In this study, this transform is used to identify and extract the acoustic components from multipath time series. The inversion is formulated as an optimization problem which maximizes the cost function defined as a normalized correlation between the measured and modeled signals in the wavelet transform coefficient vector. The experiments and procedures for deploying the light bulbs and the coherent broadband inversion method are described, and the estimated geoacoustic profile in the vicinity of the VLA site is presented.

Analysis of Effects on SWAT Estimation of Warm-Up Period

  • Lee, Ji-Won;Moon, Jong-Pil;Woo, Won-Hee;Kum, Dong-Hyuk;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2011.05a
    • /
    • pp.260-260
    • /
    • 2011
  • SWAT is semi-distributed and continuous-time distributed simulation watershed model, which can simulate point and nonpoint source pollutants as well as hydrology and water quality. It was developed to predict the effects of alternative management decisions on water, sediment, and chemical yields with reasonable accuracy. It is able to predict and manage hydrology, sediments, nutrients, and pesticides with Best Management Practices (BMPs) in a watershed. SWAT model also has potential for use in ungauged basins to predict streamflow and baseflow from saturated source area in watersheds. According to various cultivation practices and climate change, SWAT model is available to analyze relative change in hydrology and water quality. In order to establish optimum management of water quality, both monitering and modeling have been conducted actively using SWAT model. As SWAT model is computer program to simulate a lot of natural phenomena, it has limitation to predict and reflect them with on hundred percent accuracy. Thus, it is possible to analyze the effect of BMPs in the watershed where users want to simulate hydrology and water quality only if model accuracy and applicability are assessed first of all and the result of it is well for the study watershed. For assessment of SWAT applicability, most researchers have used $R^2$ and Nash and Sutcliffe Efficiency (NSE). $R^2$ and NSE are likely to show different results according to a warm up period and sometimes its results are very different. There have been hardly any studies of whether warm up period can affect simulation results in SWAT model. In this study, how warm up period has a effect on SWAT results was analyzed and a appropriate warm up period was suggested. Lots of SWAT results were compared after using measured data of Soyanggang-dam watershed and applying various warm up period (0 ~ 10 year(s)). As a result of this study, when there was no warm up period, $R^2$ and NSE were 0.645, 0.602 respectively, when warm up period was 2 years, $R^2$ and NSE were 0.648, 0.632, and when warm up period was 4 years, $R^2$ and NSE were 0.663, 0.652 separately. Through this study, sensitive analysis of warm up period in SWAT model was conducted, and this study could give a guideline able to simulate hydrology and water quality for more accuracy than before as users change a lot of warm up periods as well as any simulation parameters.

  • PDF

Application of SWAT for the Estimation of Soil Loss in the Daecheong Dam Basin (대청댐 유역 토양 침식량 산정을 위한 SWAT 모델의 적용)

  • Ye, Lyeong;Yoon, Sung-Wan;Chung, Se-Woong
    • Journal of Korea Water Resources Association
    • /
    • v.41 no.2
    • /
    • pp.149-162
    • /
    • 2008
  • The Soil and Water Assessment Tool (SWAT) developed by the USDA-Agricultural Research Service for the prediction of land management impact on water, sediment, and agricultural chemical yields in a large-scale basin was applied to Daecheong Reservoir basin to estimate the amount of soil losses from different land uses. The research outcomes provide important indications for reservoir managers and policy makers to search alternative watershed management practices for the mitigation of reservoir turbidity flow problems. After calibrations of key model parameters, SWAT showed fairly good performance by adequately simulating observed annual runoff components and replicating the monthly flow regimes in the basin. The specific soil losses from agricultural farm field, forest, urban area, and paddy field were 33.1, $2.3{\sim}5.4$ depending on the tree types, 1.0, and 0.1 tons/ha/yr, respectively in 2004. It was noticed that about 55.3% of the total annual soil loss is caused by agricultural activities although agricultural land occupies only 10% in the basin. Although the soil erosion assessment approach adopted in this study has some extent of uncertainties due to the lack of detailed information on crop types and management activities, the results at least imply that soil erosion control practices for the vulnerable agricultural farm lands can be one of the most effective alternatives to reduce the impact of turbidity flow in the river basin system.