• Title/Summary/Keyword: sediment transport processes

Search Result 65, Processing Time 0.023 seconds

Sedimentologic Characteristics of the Erosional Coast in the Tide-dominated Environment (대조차환경 침식연안의 퇴적학적 특성)

  • Kum, Byung-Chul;Oh, Jae-Kyung
    • Journal of the Korean earth science society
    • /
    • v.23 no.7
    • /
    • pp.565-574
    • /
    • 2002
  • Based on previous investigations of aerial photographs and topographical surveys, this study focuses on the sedimentologic features of the Daebudo area including sedimentation processes, sedimentary facies and hydrologic conditions of the erosional coast. A total of 137 surface sediments and one core (by hand auger) sediment were obtained to interpret the depositional environment of the erosional coast in the macro-tidal coast. Surface sediments are distributed from sandy gravel (sG) to silt (Z). Textural parameters are characterized not only by coarse, poorly sorted, positive skewed and multi-modal distribution in the supra-tidal flat, but also finer, relatively well-sorted, symmetric distribution in the intertidal flat. According to the C/M diagram, sediment transport modes of study area are characterized by the mixed mode of suspension and bedload in the upper-, middle-tidal flat and by uniform suspension in the lower-tidal flat due to tidal effect. Vertical sediment distribution of the core, collected near shoreline, shows coarsening-upward, poorly sorted pattern by the input of detritus resulting from coastal erosion. Considering the sedimentological features of the study area, it appears to be composed of a coastal zone changed by not only artificial reclamation, but also by natural processes such as strong wave action due to typhoons and storms during high water level and long/short-term sea level rising. As a result, tide-dominated erosional coasts show that the shore is affected by local, temporal and hydrological conditions near high tide level and that the intertidal flat is represented by a general tide-dominated sedimentary environment.

A Study on the Transport Mechanism of Tidal Beach Sediments I. Deukryang Bay, South Coast of Korea (조간대성 해빈 퇴적물의 이동양상에 관한 연구 I. 한국 남해안의 득량만)

  • Ryu, Sang-Ock;Kim, Joo-Young;Chang, Jin-Ho;Cho, Yeong-Gil;Shin, Sang-Eun;Eun, Go-Yo-Na
    • Journal of the Korean earth science society
    • /
    • v.27 no.2
    • /
    • pp.221-235
    • /
    • 2006
  • In order to understand the transport mechanism of tidal beach sediments in Deukryang Bay, south coast of Korea, beach profiles, surface sediments, sedimentation rates and hydrodynamic conditions have been investigated. The beach is composed of a steep beach face and gentle low-tide terrace, showing general morphologic characteristics of tide dominated beach. Central beach face of an indented coast becomes flattened in summer, but ridge and runnel system developed in other seasons makes the beach profile rather irregular. These seasonal variations of beach profiles and sedimentation rate indicate that beach sedimentation is mainly controlled by both tide and wave processes. Erosion is prevalent in winter when strong wind wave is dominant, while deposition is dominant in other seasons. However, central beach showed an apparent erosional phase in summer. This is caused by strong waves induced by southerly strong winds occurring ephemerally during the summer. On the other hand, sedimentation rates are -89.2 mm/yr on the central beach and 60.5 mm/yr and 38.2 mm/yr on the sides. This result suggests that sediments are eroded on the central beach and subsequently transported to the both sides. Therefore, the central part of Sumun beach, used as a beach bathing site, will be continuously eroded, if nearby dyke continues to prevent the sediment supply from sources.

Erosion processes in bedrock river -A review with special emphasize on numerical modelling- (기반암 하상의 침식과정 -수치 모형을 중심으로 한 고찰-)

  • Kim, Jong-Yeon;Hoey, Trevor;Bishop, Paul;Kim, Ju-Yong
    • The Korean Journal of Quaternary Research
    • /
    • v.20 no.2
    • /
    • pp.11-29
    • /
    • 2006
  • A bedrock river is a channel in which bedrock is exposed along the channel bed or walls for at least approximately half of its length. In some case, a continuous alluvial veneer may be present, but this is completely mobilized during floods. From the point of long term landscape evolution during the Quaternary, the bedrock channel determines local base level and the lowering rate of bedrock channels controls the rate of erosion and transport processes and forms on the adjacent hillslopes. In this review, various erosional processes in bedrock river channels are classified and discussed. Especially, theoretical and numerical models on channel bed abrasion with bed load sediment particles are introduced and discussed.

  • PDF

Estimation of $^{210}Pb$-derived Sedimentation Rates in the Southwestern East Sea (동해 남서부 해역에서 $^{210}Pb$를 이용한 퇴적속도 추정)

  • Han, Jeong-Hee;Choi, Man-Sik
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.4
    • /
    • pp.273-279
    • /
    • 2007
  • In order to estimate the sedimentation rates of continental shelf and slope of Ulleung Basin in the Southwestern East Sea, $^{210}Pb,\;^{226}Ra\;and\;^{137}Cs$ were simultaneously measured by a well-type high purity germanium(HPGe) gamma detector. $^{137}Cs$ was used to determine whether the sediment were affected by bioturbation or not, and to judge the accuracy of estimated sedimentation rates. The estimated sedimentation rates decreased exponentially from slope to basin - 0.6 cm/yr in the continental shelf, $0.3{\sim}0.4$ cm/yr in the slope, and below 0.2 cm/yr in the margin of Ulleung basin. From our and other research results, we suggest followings about sediment transport of the study area. The sediment particles were transported by coastal current from south to north through the Korea Straight. And much of them were accumulated in the shelf area. And then, the rest of sediment particles were deposited in the lower slope and the southwest margin of the basin. Also the excess $^{210}Pb$ profiles indicate that the depositional processes in the study area may have been very complicate.

Monitoring Shoreline Changes at the Songdo Beach, Pohang, during 2003-2010, using Google Earth (Google Earth를 활용한 포항 송도해수욕장의 해안선 변화 감시(2003-2010))

  • Choi, Jin Ho;Um, Jung-Sup
    • Journal of Environmental Impact Assessment
    • /
    • v.20 no.3
    • /
    • pp.257-267
    • /
    • 2011
  • This paper examines the spatial and temporal variability in the shoreline boundary caused by artificial structures in Songdo Beach of South Korea. Quickbird Images of 2003, 2005, 2007, and 2010 extracted from Google Earth were used to identify changing trends of shoreline boundary. The most significant changes were observed in area where groins were extensively established, inducing the sand beach much narrower than before in almost 75% of the area($15070.72m^2$ in 2003 to $3877.46m^2$ in 2010). The Google Earth made it possible to identify area-wide patterns of shoreline change subject to many different type of artificial structures, which cannot be acquired by traditional field sampling. Groin heights, lengths and profiles can be modified during maintenance operations if the Google Earth monitoring indicates that the initial layout is not operating properly as a physical barrier to control sediment transport. It is anticipated that this research could be used as a valuable reference to confirm the outputs from past field researches for coastal processes to respond to storms in more visual and quantitative manner.

Depositional Processes of Fine-Grained Sediments and Foraminiferal Imprint of Estuarine Circulation by Summer Floods in Yoja Bay, Southern Coast of Korea

  • Lee, Yeon-Gyu;Jung, Kyu-Kui;Woo, Han-Jun;Chu, Yong-Shik
    • Journal of the korean society of oceanography
    • /
    • v.35 no.2
    • /
    • pp.109-123
    • /
    • 2000
  • Depositional processes of fine-grained sediments were investigated on the basis of sediment transport vector analysis and identification of benthic foraminiferal assemblages in Yoja Bay, southern coast of Korea. The bay is a semi-enclosed embayment where extensive mud flats occur with a width up to about 4 km. Most surface sediments are poorly sorted (sorting values: 1.9-3.0 ${\phi}$) mud and silt (mean grain size: 6.0-8.7 ${\phi}$), except for the tidal inlets with basement rocks locally exposed. Grain-size distribution shows a fining tendency toward the basin center near the Yoja Island, implying a possible existence of turbidity maximum and relatively rapid settling of fine-grained sediments. The agglutinated foraminiferal taxa are dominant in the inner bay and decrease in abundance toward the mouth of the bay. Species diversities are higher in the outer bay, due to mixing of the offshore faunas with those of the bay. Four groups of benthic foraminiferal assemblages, identified by cluster analysis, represent the bay. Biofacies I and ll with relatively lower diversities are dominated by Ammobaculites exiguus and Ammonia beccarii, suggestive of influx of fresh water. In contrast, biofacies III and IV with relatively higher diversities include increased amounts of calcareous genus Elphidium and Quinquelocuzina, accounting for strong influence of sea water from the offshore. The fluvial discharge in summer floods appears to develop a bay-wide, clockwise lateral circulation in Yoja Bay, a typical of well-mixed estuaries. Accordingly, the foraminiferal assemblages of the surface sediments well show a sign of this circulation. The dominant inflow of the offshore water into the western part of the bay has resulted in more extensive muddy tidal flats compared to the eastern narrower counterpart.

  • PDF

Estimation of the Freshwater Advection Speed by Improvement of ADCP Post-Processing Method Near the Surface at the Yeongsan Estuary (ADCP 표층유속 자료처리방법 개선을 통한 영산강 하구 표층 방류수 이류속도 산정)

  • Shin, Hyun-Jung;Kang, Kiryong;Lee, Guan-Hong
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.3
    • /
    • pp.180-190
    • /
    • 2014
  • It has been customary to exclude top 10-20% of velocity profiles in the Acoustic Doppler Current Profiler (ADCP) measurement due to side lobe effects at the boundary. To better understand the mixing in the Yeongsan estuary, the freshwater advection speed (FAS) was recovered from highly contaminated ADCP data near the surface. The velocity profiles were measured by using ADCP at two stations in the Yeongsan estuary during August 2011: one was located in front of the Yeongsan estuarine dam and the other was deployed near Goha Island. The FAS was recovered from the ADCP data set by applying rigorous post-processing methods and compared with the sediment advection speed (SAS). The SAS was determined by the peak time difference of suspended sediment concentration between two stations in the channel, divided by the distance of two stations. The FAS and the SAS showed very similar value when the freshwater discharge was greater than $2.0{\times}10^7$ ton and the SAS was a bit greater when the freshwater discharge was smaller. Since the FAS was on average about 0.8 m/s greater than the velocity at 0.8 of water depth from the bottom, the net discharge, estimated with recovered FAS and integrated over water depth and tidal cycle, was directed seaward during the high discharge contrary to the onshore direction of the net discharge estimated with 0.8 of water depth from the bottom. Moreover, the velocity shear and Richardson number changed when the FAS was used. Thus, the importance of the true FAS is appreciated in the investigation of the surface layer stability. If currents, temperature and salinity were observed for longer time in the future, it could be possible to more accurately understand the formation and decay of stratification as well as the suspended sediment transport processes.

Three-Dimensional Computational Modeling of Scour around Pile Groups (군말뚝 주변의 세굴 3차원 수치모의)

  • Kim, Hyung Suk;Park, Moonhyeong
    • Journal of Korea Water Resources Association
    • /
    • v.47 no.10
    • /
    • pp.907-919
    • /
    • 2014
  • This study presents scour processes and its characteristics around the pile groups using the large eddy simulation (LES) coupled with sediment transport and morphodynamic models. The scour and deposition around pile groups were significantly influenced by the pile interval. In case the non-dimensional pile interval was less than 3.75, the local scours as well as the contraction scour were observed around the pile group. On the other hand, in case the non-dimensional pile interval was more than 3.75, the contraction scour disappeared and only local scours were developed at individual piles. Change in the scour depth at piles located in the upstream was similar with the case of single pile, but the scour depth around piles located in the downstream was lower and showed a significantly different tendency due to the presence of piles in the upstream. The non-dimensional maximum scour depth around the pile group decreased as the pile interval increased.

Soil Erosion Assessment Tool - Water Erosion Prediction Project (WEPP) (토양 침식 예측 모델 - Water Erosion Prediction Project (WEPP))

  • Kim, Min-Kyeong;Park, Seong-Jin;Choi, Chul-Man;Ko, Byong-Gu;Lee, Jong-Sik;Flanagan, D.C.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.41 no.4
    • /
    • pp.235-238
    • /
    • 2008
  • The Water Erosion Prediction Project (WEPP) was initiated in August 1985 to develop new generation water erosion prediction technology for federal agencies involved in soil and water conservation and environmental planning and assessment. Developed by USDA-ARS as a replacement for empirical erosion prediction technologies, the WEPP model simulates many of the physical processes important in soil erosion, including infiltration, runoff, raindrop detachment, flow detachment, sediment transport, deposition, plant growth and residue decomposition. The WEPP included an extensive field experimental program conducted on cropland, rangeland, and disturbed forest sites to obtain data required to parameterize and test the model. A large team effort at numerous research locations, ARS laboratories, and cooperating land-grant universities was needed to develop this state-of-the-art simulation model. The WEPP model is used for hillslope applications or on small watersheds. Because it is physically based, the model has been successfully used in the evaluation of important natural resources issues throughout the United State and in several other countries. Recent model enhancements include a graphical Windows interface and integration of WEPP with GIS software. A combined wind and water erosion prediction system with easily accessible databases and a common interface is planned for the future.

A study on alluvial deposits of tributaries of Yungsan river, near Damyang. (담양지역 영산강 지류 하천 퇴적층의 특성에 대한 연구)

  • Kim, Jong Yeon;Hong, Se Sun
    • Journal of The Geomorphological Association of Korea
    • /
    • v.20 no.4
    • /
    • pp.51-70
    • /
    • 2013
  • The characteristics of deposits formed by the Daejon-cheon and Soobuk-cheon, dissecting the mountains such as Byungpung Mt. and Samin Mt. in western part of Damyang county, Jeonmam province. Results from field survey and bore hole logging by KIGAM are used in interpreting depositional environment, in this study. By the result of deposits near of the channels Daejon-cheon and Soobuk-cheon, and main channel of Youngsan River, the depth of sediment layers in this area is 4~7m, far thinner than formerly estimated. Weathered material of local rocks forms the base of the sedimentary layers. It can be assumed that the location channel of the Youngsan river has been stable ever since the start of the sedimentary events. Sediment particles of tributaries are angular than those of Youngsan River. Particles are larger and sorting is poor. It is interpreted as mount flash flood deposits. Main sources of sediments at the valley bottom or deposition dominated area are the terrace deposits or slope deposits over the gentle foot-slope or front of surrounding mountains. Some particles show polygonal cracking on the surface originated from the strong chemical weathering, while most of these has high angularity. It means various geomorphic processes operate to produce and transport the particles in this area.Isolated hills within the sedimentary plains are made with weathered materials of local bedrock. In the case of foot-slope of the hills, thin sedimentary layers are found. So it can be concluded that surface features of deposition zone of the Daejon-cheon and Soobuk-cheon is formed by the filling of lower part of the valley and its feature partly controlled by the relief of the weathering front.