• Title/Summary/Keyword: sediment pollution

Search Result 425, Processing Time 0.022 seconds

The Behavior of Dissolved and Particulate Phases of Trace Elements within the Watershed of Juam Reservoir (주암호 집수유역 내 용존 및 입자상 미량원소의 거동 특성)

  • Lee, Pyeong-Koo;Chi, Se-Jung;Youm, Seung-Jun
    • Economic and Environmental Geology
    • /
    • v.41 no.4
    • /
    • pp.405-425
    • /
    • 2008
  • In order to investigate the amounts of trace elements flowing into reservoir, and to elucidate the relationship between trace element mobility and fraction size, the stream water and sediment samples were collected from thirty-two sites of the 3rd or 4th order stream within watershed surrounding the Juam reservoir. Chemical analyses of trace elements (As, Cd, Cr, Cu, Ni, Pb and Zn) for all samples were completed, and additionally cationi and anion for stream water samples. Considering the distribution of rocks and contamination sources in watershed, the eight stream sediments were selected from typical sites representing study areas, and we determined the concentrations of trace elements according to size fractions ($2\;mm{\sim}200\;{\mu}m$, $200{\sim}100\;{\mu}m$, $100{\sim}50\;{\mu}m$, $50{\sim}20\;{\mu}m$ and < $20\;{\mu}m$). The correlation relationships between concentrations and size fractions of stream sediments were important to identify the hydro-geochemical behavior of trace elements that flow into Juam reservoir. Stream waters showed four water types (Ca-Mg-$HCO_3$, Ca-Na-$HCO_3$-Cl, Ca-Na-$HCO_3-SO_4$, Ca-Na-$HCO_3$) depending on pollution sources such as coal mine, metal mine, farm-land and dwellings. Concentrations of trace elements increased clearly with the decrease in size fractions of stream sediments. Concentrations of Cu, Pb and Zn increased dramatically in silt size (< $20\;{\mu}m$) fraction, while As had high concentrations in sand size ($2\;mm{\sim}100\;{\mu}m$) fraction in downstream sediments of metal mines. These indicate that Cu, Zn, and Pb moved into Juam reservoir easily in the adsorbed form on silt size grain in sediments, and As was transported as As-bearing mineral facies, resulting in its less chance to reach into Juam reservoir.

Eco-friendly and efficient in situ restoration of the constructed sea stream by bioaugmentation of a microbial consortium (복합미생물 생물증강법을 이용한 인공해수하천의 친환경 효율적 현장 수질정화)

  • Yoo, Jangyeon;Kim, In-Soo;Kim, Soo-Hyeon;Ekpeghere, Kalu I.;Chang, Jae-Soo;Park, Young-In;Koh, Sung-Cheol
    • Korean Journal of Microbiology
    • /
    • v.53 no.2
    • /
    • pp.83-96
    • /
    • 2017
  • A constructed sea stream in Yeongdo, Busan, Republic of Korea is mostly static due to the lifted stream bed and tidal characters, and receives domestic wastewater nearby, causing a consistent odor production and water quality degradation. Bioaugmentation of a microbial consortium was proposed as an effective and economical restoration technology to restore the polluted stream. The microbial consortium activated on site was augmented on a periodic basis (7~10 days) into the most polluted site (Site 2) which was chosen considering the pollution level and tidal movement. Physicochemical parameters of water qualities were monitored including pH, temperature, DO, ORP, SS, COD, T-N, and T-P. COD and microbial community analyses of the sediments were also performed. A significant reduction in SS, COD, T-N, and COD (sediment) at Site 2 occurred showing their removal rates 51%, 58% and 27% and 35%, respectively, in 13 months while T-P increased by 47%. In most of the test sites, population densities of sulfate reducing bacterial (SRB) groups (Desulfobacteraceae_uc_s, Desulfobacterales_uc_s, Desulfuromonadaceae_uc_s, Desulfuromonas_g1_uc, and Desulfobacter postgatei) and Anaerolinaeles was observed to generally decrease after the bioaugmentation while those of Gamma-proteobacteria (NOR5-6B_s and NOR5-6A_s), Bacteroidales_uc_s, and Flavobacteriales_uc_s appeared to generally increase. Aerobic microbial communities (Flavobacteriaceae_uc_s) were dominant in St. 4 that showed the highest level of DO and least level of COD. These microbial communities could be used as an indicator organism to monitor the restoration process. The alpha diversity indices (OTUs, Chao1, and Shannon) of microbial communities generally decreased after the augmentation. Fast uniFrac analysis of all the samples of different sites and dates showed that there was a similarity in the microbial community structures regardless of samples as the augmentation advanced in comparison with before- and early bioaugmentation event, indicating occurrence of changing of the indigenous microbial community structures. It was concluded that the bioaugmentation could improve the polluted water quality and simultaneously change the microbial community structures via their niche changes. This in situ remediation technology will contribute to an eco-friendly and economically cleaning up of polluted streams of brine water and freshwater.

Characteristics of Meiofauna Community Inhabiting Continental Shelf of Yellow Sea, Korea (황해 대륙붕에 서식하는 중형저서동물 군집 특성)

  • JUNG, MIN GYU;KIM, DONGSUNG;KANG, TEAWOOK;OH, JE HYEOK;SHIN, AYONG;OH, CHUL WOONG
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.27 no.2
    • /
    • pp.103-125
    • /
    • 2022
  • This study aims to identify the community characteristics of meiofauna inhabiting the Yellow Sea continental shelf. To this end an annual survey was conducted considering the seasons from 2018 to 2020 at 13 stations with a depth of 18~90 m of the Yellow Sea located at latitudes 35, 36 and 37 degrees north latitude. The survey was conducted in three seasons of spring, summer, and autumn at 5 stations in October 2018, 9 stations in April 2019, and 6 stations in August 2020 was used to collect 3 repetitions at each station. The habitat density of meiobenthos in the surveyed area was in the range of 45~1029 inds./10 cm2, which was similar to the previous studies conducted in the Yellow Sea. The density of meiobenthos according to the seasons was 800±69 inds./10 cm2 in autumn, the highest, and the lowest at 260±48 inds./10 cm2 in summer. A total of 19 taxa appeared in meiobenthos, and the average value showed the number of nine taxa. Among the appearing taxa, the most dominant taxon was nematodes, accounting for 80.8% of the total density, followed by benthic copepods (8.8%) and benthic foraminifers (4.7%). As for the size distribution of medium benthic animals, the density of organisms corresponding to the size of 63~125 ㎛ was the highest, and 1~0.5 mm was the lowest. As for the vertical distribution in the sediments of medium benthic animals, the habitat density gradually decreased as the depth increased in the sediment surface layer. As a result of analysis of the N/C ratio, MPI, and ITD index using medium-sized benthic animals to identify the benthic environment, there were differences by season, but no values indicating pollution overall.

Changes in Benthic Polychaete Community after Fish Farm Relocation in the South Coast of Korea (어류양식장 이전 후 저서다모류 군집 변화)

  • Park, Sohyun;Kim, Sunyoung;Sim, Bo-Ram;Park, Se-jin;Kim, Hyung Chul;Yoon, Sang-Pil
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.27 no.7
    • /
    • pp.943-953
    • /
    • 2021
  • The purpose of this study is to investigate sediment recovery after the relocation of fish cage farms, by examining the changes in sediments and the benthic polychaete community. A preliminary survey was carried out in October 2017, before the relocation of the farms, and monthly surveys were conducted from November 2017 to October 2018 after the farms were moved. Subsequently, it was conducted every 2-3 months until October 2020. The survey was carried out at three stations (Farm1-3) at the location of the removed fish farms and at three control stations (Con1-3) without farms. The overall organic carbon content of the farm stations was higher than the control stations, but it gradually decreased after the farm was demolished, and there was no statistically significant difference about one year after the relocation of the farms (p<0.05). In the benthic polychaete community, abiotic community appeared at the farm stations in the summer, and consequently, the community transitioned to a low-diversity region with the predominant species Capitella capitata, which is an indicator of pollution. Until the abiotic period in the summer of the next year, the species diversity increased and the proportion of indicator species decreased, showing a tendency of recovering the benthic polychaete community, and these changes were repeated every year. In this study, the abiotic community appeared every year owing to the topographical characteristics, but as the survey progressed, the period of abiotic occurrence became shorter and the process of community recovery progressed expeditiously. Biological recovery of sediments after the relocation of the fish farms is still in progress, and it is imperative to study recovery trends through continuous monitoring.

Introduction to the Benthic Health Index Used in Fisheries Environment Assessment (어장환경평가에 사용하는 저서생태계 건강도지수(Benthic Health Index)에 대한 소개)

  • Rae Hong Jung;Sang-Pil Yoon;Sohyun Park;Sok-Jin Hong;Youn Jung Kim;Sunyoung Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.7
    • /
    • pp.779-793
    • /
    • 2023
  • Intensive and long-term aquaculture activities in Korea have generated considerable amounts of organic matter, deteriorating the sedimentary environment and ecosystem. The Korean government enacted the Fishery Management Act to preserve and manage the environment of fish farms. Based on this, a fisheries environment assessment has been conducted on fish cage farms since 2014, necessitating the development of a scientific and objective evaluation method suitable for the domestic environment. Therefore, a benthic health index (BHI) was developed using the relationship between benthic polychaete communities and organic matter, a major source of pollution in fish farms. In this study, the development process and calculation method of the BHI have been introduced. The BHI was calculated by classifying 225 species of polychaetes appearing in domestic coastal and aquaculture areas into four groups by linking the concentration gradient of the total organic carbon in the sediment and the distributional characteristics of each species and assigning differential weights to each group. Using BHI, the benthic fauna communities were assigned to one of the four ecological classes (Grade 1: Normal, Grade 2: Slightly polluted, Grade 3: Moderately polluted, and Grade 4: Heavily polluted). The application of the developed index in the field enabled effective evaluation of the Korean environment, being relatively more accurate and less affected by the season compared with the existing evaluation methods like the diversity index or AZTI's Marine Biotic Index developed overseas. In addition, using BHI will be useful in the environmental management of fish farms, as the environment can be graded in quantified figures.