• Title/Summary/Keyword: sediment grain size

Search Result 342, Processing Time 0.03 seconds

Spatio- and temporal patterns of benthic environment and macrobenthos community on subtidal soft-bottom in Chonsu Bay, Korea (천수만 조하대 연성저질의 저서환경과 저서동물 군집의 시${\cdot}$공간적 양상)

  • PARK Heung-Sik;LIM Hyun-Sig;HONG Jae-Sang
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.33 no.3
    • /
    • pp.262-271
    • /
    • 2000
  • This study was carried out to clarify the spatial and temporal patterns of benthic environments and macrobenthos on the subtidal soft-bottom in Chonsu Bay. Seasonal surface water temperature was similar to the bottom layer, but freshwater discharges into the outlets dereased the surface salinity around the dyke in summer. Bottom dissolved oxygen was decreased deeply around the dyke and created the de-oxygenated layer during summer. Sediment grain size was consisted of finer at the neighboring of the dyke than the mouth of the bay. Organic matters including the sediment were decreased at the mouth of the bay. A total of 311 species ($769\;ind./m^2$) were identified. Polychaetes were the most abundant faunal group in the number of species and densities. The number of species revealed the spatial patterns that it was higher in the mouth of the bay, and their densities showed seasonal changes by mass recruitment occurred at the most of the area in summer, At this time, opportunistic species, Lumbrineris iongifolia and Theora fragilis, were also recruited massively. Chonsu Bay were classified into five station groups by the cluster analysis. The dominant species around the dyke were composed to opportunistic species, those in middle area were Sternaspis scutata, Paraplionospio pinnata, and those in the mouth of the bay were Mediomastus californiensis, Nephtys polybranchia. Seasonal fluctuations and spatial difference of environments seem to have influenced to the species compositions and affected to the stability of benthic ecosystems spatial-temporally In Chonsu nay.

  • PDF

Geochemical Characteristics of Surface Sediments in the Eastern Part of the Yellow Sea and the Korean West Coast (황해 동부 대륙붕과 한반도 서해안 표층퇴적물의 지구화학적 특성)

  • 조영길;이창복;박용안;김대철;강효진
    • The Korean Journal of Quaternary Research
    • /
    • v.7 no.1
    • /
    • pp.69-91
    • /
    • 1993
  • A total of 76 surface sediment samples, collected from the Korean west coast and the eastern Yellow Sea areas, were analyzed for their elemental composition in order to understand the geochemical characteristics of these deposits. The analyzed elements included 9 major elements (Al, Fe, Na, K, Mg, Ca, Ti, P, Mn), 8 minor elements (Sr, Ba, V, Cr, Co, Ni, Cu, Zn), organic carbon and calcium carbonate. Contents of most analyzed elements, excluding K and Ba, were generally low compared to those of average crust. Contents of most elements, except K and Ca, also correlated with sediment grain size, though the degree of relationship varied widely from one element to another. For fine-grained sediments, a distinction could be made between those in the central Yellow Sea and those in the Keum Estuary based on their characteristic elemental composition: the former were rich in Fe, Na, K, Mg, Ca and V, and the latter in Mn, Co and Ni. The element/aluminium ratios, on the other hand, showed that the central Yellow Sea muds were enriched in Fe, Mg, V, Ni, Cu and Zn and depleted in K, Mn, Ba and Sr relative to the mud located near the Korean Peninsula. Based on the analysis of these results, as well as of the influences of particular mineral phases or pollution effects, we could suggest geochemical criteria which can be used in distinguishing muds from the two different sources, the Keum River and the Yellow River: the former by the higher Mn content and the latter by the higher Mg and V contents, relative to each other.

  • PDF

Temporal Variations in the Sedimentation Rate and Benthic Environment of Intertidal Surface Sediments around Byeonsan Peninsula, Korea (변산반도 조간대 표층 퇴적물의 퇴적률 및 저서환경 변화)

  • Jung, Rae-Hong;Hwang, Dong-Woon;Kim, Young-Gil;Koh, Byoung-Seol;Song, Jae-Hee;Choi, Hee-Gu
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.43 no.6
    • /
    • pp.723-734
    • /
    • 2010
  • To understand temporal variations in geochemical characteristics of intertidal surface sediments around Byeonsan Peninsula (in the middle of the western coast, Korea) after the construction of Saemanguem dyke, the sedimentation rate and various geochemical parameters, including mean grain size (Mz), water content (WC), ignition loss (IL), chemical oxygen demand (COD), and acid volatile sulfide (AVS), were measured along four transects (A.D lines) at monthly intervals from February 2008 to March 2009. The average monthly sedimentation rate ranged from -5.3 to 3.8 mm/month (mean $-0.8{\pm}2.7\;mm$/month), which showed an erosion-dominated environment in the lower part of the intertidal zone. In addition, surface sediments were eroded in summer and autumn, but were deposited in spring and winter. The Mz of surface sediments ranged from -0.8 to $3.4{\varnothing}$ (mean $2.8{\pm}0.5{\varnothing}$), indicating that the surface sediments consist of coarser sediments (sand and slightly gravelly sand). The Mz of surface sediments did not show large monthly and/or seasonal variations, although the sedimentation rates of surface sediment showed large seasonal variation. This may be due to lateral shifting and effective dispersion of surface sediments by wind, tide, and longshore current. The concentrations of IL and COD in the surface sediments ranged from 0.2 to 2.9% (mean $1.4{\pm}0.4%$) and from 0.2 to $18.5\;mgO_2$/g-dry (mean $3.9{\pm}3.4\;mgO_2$/g-dry), respectively, which were slightly higher in spring than in the other seasons. This may be related to spring blooms of phytoplankton in seawater and/or benthic microalgae in surface sediments. On the other hand, no AVS concentrations were detected in surface sediments at any of the sampling stations during the study period.

Geochemical Characteristics and Heavy Metal Pollutions in the Surface Sediments of Gwangyang and Yeosu Bay, south coast of Korea (광양만 및 여수해만 표층퇴적물의 지화학적 특성과 중금속 오염)

  • 현상민;이태희;최진성;최동림;우한준
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.8 no.4
    • /
    • pp.380-391
    • /
    • 2003
  • Surface sediments were collected from Gwangyang and Yeosu Bays to evaluate their sedimentological characteristics and geochemical aspects of both the benthic environment and heavy metal pollution. The grain size distribution includes both sandy and muddy sediments. Sand-rich sediments occur mainly near the POSCO and the channel between Namhedo and Yeosu Bando, while elsewhere mud-dominated sediments are present. TOC content ranges from 0.2 to 2.1 % and C/N ratios indicate that the range arises from the mix of organic matter. The C/S ratios of this organic matter show that parts of the study area are anoxic or have sub-anoxic bottom conditions. The hydrogen sulfide content of the sediment has a range of 0.7 to 301 ppm, with a high content occurring inshore of Myodo Island, where it indicates a polluted environment. The enrichment factor (Ef) and index of accumulation rate (Igeo) of ten heavy metals (Co, Ni, Cu, Cd, Pb, Li, Zn, V, Cr, Ba) show that parts of the study area contain from one to seven times more Pb and Ba, and from 0.8 to 3.5 times more of the other elements than the mean sediment value. The Igeo values of V and Cd show that different parts of the area can be classified as heavily polluted, heavily to moderately polluted, or more or less unpolluted. Those areas that have both high levels of enrichment and high accumulation rates of heavy metals contain predominantly fine sediments with a high organic matter and hydrogen sulfide content.

Application of SAR DATA to the Study on the Characteristics of Sedimentary Environments in a Tidal Flat (SAR 자료를 이용한 갯벌 퇴적환경 특성 연구)

  • Kim, Kye-Lim;Ryu, Joo-Hyung;Kim, Sang-Wan;Choi, Jong-Kuk
    • Korean Journal of Remote Sensing
    • /
    • v.26 no.5
    • /
    • pp.497-510
    • /
    • 2010
  • In this study, comparisons of the backscattering coefficients and the coherence values which had been extracted from SAR (Synthetic Aperture Radar) images such as JERS-1, ENVISAT and ALOS satellites with surface roughness, surface geometric and soil moisture content were carried out. As the results of analysis using the backscattering coefficient and coherence values from SAR images, the coherence was shown high in the region containing more of mud fraction due to higher viscosity of fine grain-size. A lot of tidal channels were well developed in the Ganghwa tidal flat, affecting the drainage of seawater and subsequent soil moisture content by exposure time of tidal flat. The backscattering coefficient. consequently, appeared to be lower in sand flat and mix flat with decrease of soil moisture. In contrast, most mud flats were distributed at high elevation so that soil moisture was not much influenced by seawater. The backscattering coefficient in mud flat seemed to have a relationship with the density of tidal channel. In addition, lowering backscattering coefficients in the all Ganghwa tidal flat was observed when surface remnant water increased according to the amount of rainfall. The correlation between backscattering coefficient, coherence and sediment environment factors in the Ganghwa tidal flat was investigated. In the future, more quantitative spatial analysis will be helpful to well understand the sedimentary influence of various sediment environment factors.

Characteristics of Surface Sediments and Accumulation before and after the Typhoon Kompasu in the Gochang Gwangseungri Sandy Intertidal Flat, Korea (태풍 곤파스 전·후 고창 광승리 사질 조간대의 표층 퇴적물과 집적 특성)

  • Sol Ip Kang;Woo Hun Ryang
    • The Korean Journal of Quaternary Research
    • /
    • v.34 no.1
    • /
    • pp.15-30
    • /
    • 2024
  • Typhoon effects on macrotide open-coast intertidal sediments were investigated in the Gochang Gwangseungri sandy intertidal flat on the Korean western coast. Variations in the surface sediment texture, accumulation, and sedimentary facies were observed before and after the Typhoon Kompasu in 2010. The typhoon Kompasu landed on the southwestern coast of the Korean Peninsula and passed inland between September 1st and 2nd, 2010, respectively. Surface sediments and their accumulation before and after the typhoon were sampled and measured at intervals of 30 m along a survey line on the Gwangseungri intertidal flat. The intertidal areas were divided into high, middle, and lower tidal zones based on the mean high-wate level, mean sea level, and mean low-water level, respectively. The surface sediments of each tidal zone show rare variations in grain size and sorting of sediment texture before and after the typhoon Kompasu, whereas negative skewness values increased in the middle and lower tidal zones after the typhoon rather than before the typhoon. Surface accumulation represents deposition in the upper and middle tidal zone and erosion in the lower tidal zones after the typhoon. The accumulation decreased from the high to the lower tidal zones.

Long-term Changes of Bathymetry and Surface Sediments in the dammed Yeongsan River Estuary, Korea, and Their Depositional Implication (영산강 하구의 수심 및 표층 퇴적물 특성의 변화와 퇴적환경)

  • KIM, YOUNG-GIL;CHANG, JIN HO
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.22 no.3
    • /
    • pp.88-102
    • /
    • 2017
  • Long-term changes in bathymetry and grain size of surface sediments were investigated for understanding depositional sedimentary environments in the channelized Yeongsan River Estuary, Korea. The results revealed that an average depth of the estuary had decreased up to 2.1 m from 1982 to 2006, while it had increased to 0.3 m from 2006 to 2012. The rapid decrease of the water depth from 1982 to 2006 was due to the vast deposition of mud caused by the change of water course and flow velocity after the estuary was dammed. Meanwhile the increase of the water depth from 2006 to 2012 may be associated with multiple erosional processes, including a dredging at the southern part of the estuary and other erosions from the dike sluice expansion work. Considering the water-depth change and tidal-level variation in the study area, an depositional rate in the estuary is estimated to be 8~9 cm/yr for the last 2 decades (1982~2006). The sediments of Yeongsan River Estuary are largely composed of silt-clay mixtures: overall, silt is distributed mainly in the shallow area of the estuary edge, while clay is confined to the deep area of the estuary center. Mean grain size of the sediments is 6.0 Ø on average in 1997, 7.8 Ø on average in 2005 and 7.7 Ø on average in 2012, respectively, suggesting that the sediments became finer due to the increase of silt and clay contents in 1997~2005. Furthermore, several lines of evidences, including the comparison between the amounts of the sediment influx discharged from the Yeongsan River and the sediments in the estuary, and the changes in distribution pattern of silt and clay contents implying that they moved from offshore to estuary dike, indicate that the mud sediments are originated mainly from the offshore, not from the river.

The Analysis of Tidal Channel Development Using Fractal (프랙탈 기법을 이용한 조류로 발달 양상의 분석)

  • Eom, Jin-Ah;Lee, Yoon-Kyung;Ryu, Joo-Hyung;Won, Joong-Sun;Choi, Jung-Hyun
    • Korean Journal of Remote Sensing
    • /
    • v.23 no.2
    • /
    • pp.131-135
    • /
    • 2007
  • The tidal channel is influenced by sediment type, grain size, grain composition and tidal currents in tidal flat. The development of tidal channel including density, shape and order can be used to analyze the characteristics of tidal channel. The quantitative investigation to the tidal channel is insufficiency. In this paper, we represented the fractal analysis method according to the quantitatively analysis in tidal channel and compared with the different intertidal channel patterns. The tidal channel was extracted from the IKONOS image of the southern part of the Kanghwa-do. We used the Box-counting method to estimate fractal dimensions for each tidal channel. As a result, the fractal dimension values (D) were 1.31 in the southern Kanghwa-Do. Linear pattern and less dense channel development area had low D values (from 1.0563 to 1.0672). Dendritic pattern and dense channel development area had high D values (from 1.2550 to 1.3016). In other words, fractal dimension values had difference about 0.2 values according to the characteristic of tidal channel development. We concluded that fractal analysis can be able to quantitatively classification in tidal channel.

Major Elemental Compositions of Korean and Chinese River Sediments: Potential Tracers for the Discrimination of Sediment Provenance in the Yellow Sea (한국과 중국의 강 퇴적물의 주성분 원소 함량 특성: 황해 니질 퇴적물의 기원지 연구를 위한 잠재적 추적자)

  • Lim, Dhong-Il;Shin, In-Hyun;Jung, Hoi-Soo
    • Journal of the Korean earth science society
    • /
    • v.28 no.3
    • /
    • pp.311-323
    • /
    • 2007
  • The Yellow and East China seas received a vast amount of sediment $(>10^9ton/yr)$, which comes mainly from the Changjiang and Huanghe rivers of China and the Korean rivers. However, there are still no direct sedimentological-geochemical indicators, which can distinguish these two end-members (Korean and Chinese river sources) in these seas. The purpose of this study is to provide the potential geochemical-tracers enabling these river materials to be identified within the sediment load of the Yellow and East China seas. The compositions of major elements (Al, Fe, Mg, K, Ca, Na, and Ti) of Chinese and Korean river sediments were analyzed. To minimize the grain-size effect, furthermore, bulk sediments were separated into two groups, silt $(60-20{\mu}m)$ and clay $(<20{\mu}m)$ fractions, and samples of each fraction were analyzed for major and strontium isotope $(^{87}Sr/^{86}Sr)$ compositions. In this study, Fe/Al and Mg/Al ratios in bulk sediment samples, using a new Al-normalization procedure, are suggested as an excellent tool for distinguishing the source of sediments in the Yellow and East China seas. This result is clearly supported by the concentrations of these elements in silt and clay fraction samples. In silt fraction samples, Korean river sediments have much higher $^{87}Sr/^{86}Sr$ ratio $(0.7229{\sim}0.7253)$ than Chinese river sediments $(0.7169{\sim}0.7189)$, which suggests the distribution pattern of $^{87}Sr/^{86}Sr$ ratios as a new tracer to discriminate the provenance of shelf sediments in the Yellow and East China seas. On the basis of these geochemical tracers, clay fractions of southeastern Yellow Sea mud (SEYSM) patch may be a mixture of two sediments originated from Korea and China. In contrast, the geochemical compositions of silt fractions are very close to that of Korea river sediments, which indicates that the silty sediments of SEYSM are mainly originated from Korean rivers.

Depositional Environments and Characteristics of Surface Sediments in the Nearshore and Offshore off the Mid-Western Coast of the Korean Peninsula (한반도 중서부 근 ${\cdot}$ 외해의 표층 퇴적물 특성과 퇴적환경)

  • Oh, Jae-Kyung;Kum, Byung-Chul
    • Journal of the Korean earth science society
    • /
    • v.22 no.5
    • /
    • pp.377-387
    • /
    • 2001
  • In order to elucidate sedimentation processes and depositional environments in transitional area between continental shelf and coastal zone, sedimentologic study has been done with 84 surface sediments sampled in nearshore/offshore off the mid-western coast of the Korean Peninsula for 3 years (1996${\sim}$1999). The surface sediment can be classified into 4 facies (gravelly sand, sand, silty sand and sandy silt). Mean grain size, sorting, skewenss and kurtosis varies -0.39${\sim}7.82{\Phi}$, 0.36${\sim}4.68{\Phi}$, -0.38${\sim}$0.86, -1.56${\sim}$3.43, respectively. The textural parameters show a finer-grained and poorly-sorted trend shoreward, northward and southward from the central part of the study area. The positively-skewed distribution and relationship of each textural parameters indicate a tide-dominated depositional environment. According to C/M diagram, there are 3 different domains (mode A, B, C) of sediment transport mode. The northern part is characterized by bedload transport (mode A) and represents co-influence of wave and tide, whereas domain C in the southern part is controlled by uniform suspension transport (mode C), correlating with sandy-silt area. In the broad middle area, transport processes are complex (the mixture of bedload, graded suspension and uniform suspension; mode B). Hence, the subdivision depositional environments of this study area may be classified by 3 depositional environments dependent on the interplay of sediment supplies from river, relict sediments and hydrologic conditions. In results, the nearshore and offshore areas are thus characterized as a mixing zone between coastal terrigenous sediments and relict sediments in the continental shelf by complex processes (tide, wave and river flow). These sedimentation processes play an important role in producing distinct sedimentologic features in the transitional zone linking coastal and shelfal areas.

  • PDF