DOI QR코드

DOI QR Code

Long-term Changes of Bathymetry and Surface Sediments in the dammed Yeongsan River Estuary, Korea, and Their Depositional Implication

영산강 하구의 수심 및 표층 퇴적물 특성의 변화와 퇴적환경

  • 김영길 ((주)지오시스템리서치) ;
  • 장진호 (국립목포대학교 해양수산자원학과)
  • Received : 2016.11.10
  • Accepted : 2017.07.24
  • Published : 2017.08.31

Abstract

Long-term changes in bathymetry and grain size of surface sediments were investigated for understanding depositional sedimentary environments in the channelized Yeongsan River Estuary, Korea. The results revealed that an average depth of the estuary had decreased up to 2.1 m from 1982 to 2006, while it had increased to 0.3 m from 2006 to 2012. The rapid decrease of the water depth from 1982 to 2006 was due to the vast deposition of mud caused by the change of water course and flow velocity after the estuary was dammed. Meanwhile the increase of the water depth from 2006 to 2012 may be associated with multiple erosional processes, including a dredging at the southern part of the estuary and other erosions from the dike sluice expansion work. Considering the water-depth change and tidal-level variation in the study area, an depositional rate in the estuary is estimated to be 8~9 cm/yr for the last 2 decades (1982~2006). The sediments of Yeongsan River Estuary are largely composed of silt-clay mixtures: overall, silt is distributed mainly in the shallow area of the estuary edge, while clay is confined to the deep area of the estuary center. Mean grain size of the sediments is 6.0 Ø on average in 1997, 7.8 Ø on average in 2005 and 7.7 Ø on average in 2012, respectively, suggesting that the sediments became finer due to the increase of silt and clay contents in 1997~2005. Furthermore, several lines of evidences, including the comparison between the amounts of the sediment influx discharged from the Yeongsan River and the sediments in the estuary, and the changes in distribution pattern of silt and clay contents implying that they moved from offshore to estuary dike, indicate that the mud sediments are originated mainly from the offshore, not from the river.

본 연구에서는 영산강 하구에서 측정된 수심 자료(1982년, 2006년, 2012년)와 표층 퇴적물 입도 자료(1997년, 2005년, 2012년)의 시계열 변화 연구를 통하여 하구역의 퇴적환경 변화를 규명하였다. 영산강 하구는 돌출암초를 가진 수로형 하구로서 서해안의 다른 하구들에 비해 좁고, 깊고, 반폐쇄적인 특징을 갖는다. 영산강 하구의 수심은 1982~2006년 동안 평균 2.1 m나 감소한 반면, 이후 2006~2012년 사이에는 0.3 m 증가하였다. 1982~2006년 사이의 급격한 수심 감소는 하굿둑 건설 이후 수로의 유로 변경과 급격한 유속 감소에 따른 니질(mud) 퇴적물의 퇴적, 그리고 2006~2012년 사이의 수심 증가는 주로 하구 남측 해역의 준설과 배수갑문 확장 공사에 따른 주변 지역의 준설 때문으로 해석된다. 하굿둑 건설 이후 하구의 수심 변화량과 조위 변화량 등을 고려할 때, 지난 24년 동안(1982~2006년) 영산강 하구에서 연간 8~9 cm/yr의 퇴적이 이루어진 것으로 평가된다. 영산강 하구의 표층 퇴적물은 90% 이상이 실트와 점토로 구성된 니질 퇴적물이며, 실트는 수심이 얕은 하구의 가장자리에, 점토는 수심이 깊은 하구 중앙부에 우세하게 분포한다. 표층 퇴적물의 평균입도(mean grain size) 변화는 1997년 평균 6.0 Ø, 2005년 평균 7.8 Ø, 2012년 평균 7.7 Ø로 1997~2005년 사이에 실트와 점토의 증가로 인해 전반적으로 세립화한 특성을 보인다. 담수 방류에 의해 하구로 유입되는 퇴적물의 양과 하구에 퇴적된 니질 퇴적물 양의 비교, 그리고 바다 쪽에서 하굿둑 방향으로 이동했음을 보여주는 실트와 점토 분포 패턴의 변화 등은 영산강 하구에 퇴적된 니질 퇴적물의 주요 기원이 강이 아닌 외해(offshore)임을 지시한다.

Keywords

References

  1. Bang K.Y., T.I. Kim, Y.S. Song, J.H. Lee, S.W. Kim, J.G. Cho, J.W. Kim, S.B. Woo and J.K. Oh, 2013. Numerical modeling of sediment transport during the 2011 summer flood in the Youngsan River Estuary, Korea. J. Korean Society of Coastal and Ocean Engineers, 25(2): 76-93. https://doi.org/10.9765/KSCOE.2013.25.2.76
  2. Byun D.S., X.H. Wang and P.E. Holloway, 2004. Tidal characteristic adjustment due to dyke and seawall construction in the Mokpo Coastal Zone, Korea. Eaturine, Coastal and Shelf Science, 50: 184-196.
  3. Castaing, P. and G.P. Allen, 1981. Mechanisms controlling seaward escape of suspended sediment from the Gironde: a macrotidal estuary in France. Marine Geology, 40: 101-118. https://doi.org/10.1016/0025-3227(81)90045-1
  4. Cho Y.G. and K.Y. Park, 1998. Heavy metals in surface sediments of the Youngsan Estuary, West Coast of Korea. J. Korean Environmental Sciences Society, 7(4): 549-557.
  5. Cho Y.K., L.H. Park, C. Cho, I.T. Lee, K.Y. Park and C.W. Oh, 2004. Multi-layer structure in the Youngsan Estuary, Korea. Estuarine, Coastal and Shelf Science, 61: 325-329. https://doi.org/10.1016/j.ecss.2004.06.003
  6. Folk, R.L. and W.C. Ward, 1957. Brazos river bar: a study in the significance of grain size parameter. J. Sedimentary Petrology, 27: 3-26. https://doi.org/10.1306/74D70646-2B21-11D7-8648000102C1865D
  7. FRPEB (Four-River Project Evaluation Board), 2014. Research and evaluation report of the four-river Project, 226 pp.
  8. GROOF (Gunsan Regional Office of Oceans and Fisheries), 2010. Research service report on hydraulic changes of the Keum River Estuary, 346 pp.
  9. Jeong D.D. and J.S. Keum, 1999. A study on the change of current in the vicinity of Mokpo Harbor due to the discharging from Yongsan River Estuary Weir. J. Mokpo National Maritime University, 7(I): 109-118.
  10. Jeong D.D., J.W. Lee and S.G. Gug, 1999. A study on the change of water quality in the vicinity of Mokpo Harbor due to the discharges from Youngsan River Estuary Weir and Yongam-Kumho Sea Dike. J. the Korean Institute of Port Research, 13(2): 1-8.
  11. Kang J.W., J.J. Song and N.S. Oh, 1998. Analysis of ebb-dominant tidal currents characteristics at Mokpo coastal zone. J. Korean Society of Civil Engineering, 18(11-2): 185-193.
  12. Kang J.W., S.R. Moon and S.M. Ahn, 2002. Suspended sediment transport characteristics in the estuary with significant shallow water tides and tidal flat. J. Ocean Engineering and Technology, 4(3): 201-208.
  13. KHOA (Korea Hydrographic and Oceanographic Agency), 1965. Technical report, 57-104.
  14. KHOA (Korea Hydrographic and Oceanographic Agency), 1994. Technical report, 110 pp.
  15. KHOA (Korea Hydrographic and Oceanographic Agency), 2006. Tidal table (Korean coast), 298 pp.
  16. Kim, H.D., C.S. Kim, J.H. Kim, Y.H. Jung and Y.H. Lee, 2014. A study on magnetic survey method for investigating underwater artifacts. Later a Joint Symposium of the Korea Society of Marine Engineering, 283 pp.
  17. Kim K.S., 1999. A numerical simulation of M2 tide in Mokpo Harbour. J. Mokpo National Maritime University, 7(I): 97-108.
  18. Kim T.I., 2002. Hydrodynamics and sediment processes in the Keum River Estuary, West Coast of Korea. Ph.D Thesis, Sungkyunkwan University, Suwon, 206 pp.
  19. Kim Y.J., C.S. Lee, H.N. Kim and I.H. Hwang, 1999. Geochemistry and geochronology of the Cretaceous igneous rocks in the Mokpo area. J. the Korea Earth Science Society, 20(5): 505-519.
  20. Kwon H.K. and S.H. Lee, 1999. Physical environment changes in the Keum River Estuary by the dyke gate operation: I. mean sea level and tide. J. the Korea Society of Oceanography, 4(2): 93-100.
  21. Lee H.J., Y.S. Chu and Y.A. Park, 1999. Sedimentary processes of fine-grained material and the effect of seawall construction in the Daeho macrotidal flat-nearshore area, northern west coast of Korea. J. Marine Geology, 157: 171-184. https://doi.org/10.1016/S0025-3227(98)00159-5
  22. Meade, R.H., 1969. Landward transport of bottom sediments in estuaries of the Atlantic coastal plain. J. Sedimentary Petrology, 39: 222-234.
  23. MROOF (Mokpo Regional Office of Oceans and Fisheries), 2015. Quantity takeoff report for the construction of governmentship mooring facilities in the southern harbor of Mokpo.
  24. MST (The Ministry of Science-Technology), 1993. Sedimentary effects of break-water construction on coastal environments (I), 175 pp.
  25. NGI (National Geographic Institute), 1982. Basic Survey of Coastal Area: Mokpo area, 41 pp.
  26. Park L.H., 2001. Water movement and variations of temperature and salinity at the Youngsan River Estuary: winter and summer. Master Thesis, Chonnam National University, Jeonnam.
  27. Park L.H., Y.K. Cho, C. Cho, Y.J. Sun and K.Y. Park, 2001. Hydrography and circulation in the Youngsan River Estuary in summer, 2000. J. the Korea Society of Oceanography, 6(4): 218-224.
  28. Park Y.J., 1987. Ecological survey on the marine environments in Yeongsan River Estuary before and after the enclosure of a dam. Master Thesis, Chosun University, Gwangju.
  29. Passega, R., 1964. Grain size representation by CM pattern as a geological tool. J. Sedimentary Petrology, 34: 830-847. https://doi.org/10.1306/74D711A4-2B21-11D7-8648000102C1865D
  30. Woo J.S., H.S. Choi, H.J. Lee and T.H. Kim, 2014. Organic matter in the sediments of Youngsan River Estuary: distribution and sources. J. Environmental Science International, 23(7): 1375-1383. https://doi.org/10.5322/JESI.2014.23.7.1375