• Title/Summary/Keyword: sediment environment

Search Result 1,289, Processing Time 0.034 seconds

Monitoring and Management of Contaminated Suspended Solid (오염 부유물질의 관측과 관리)

  • Kim, Geonha
    • Journal of Korean Society on Water Environment
    • /
    • v.27 no.6
    • /
    • pp.932-937
    • /
    • 2011
  • Main objectives of this paper were; firstly, to explain impacts of suspended solid in the water body on the relationship between water quantity and water quality; secondly, study on the inter-relationship between organic materials, nutrients, pathogens, and suspended solids considering eco-friendly water resources. Relationship between water quality and water quantity is not easy to understand as it includes physicochemical-biological reactions and diffuse pollutions. Especially, suspended solid makes water resource management difficult. Eroded soil in the upper land transported to the downstream by water flows carrying biological and physicochemical information and sedimented in the downstream. As sediment scoured under high flow condition and environmental change, suspended solid and sediment should be emphasized for understanding the inter-relationship between water quality and water quantity. Knowledge gaps between known monitored data and management of suspended solid were identified as well for future study.

Measurement of metals in sediment of the Geum-River and their correlation (금강수계 퇴적물 중 금속류 분석 및 상관성 조사)

  • Lee, Jun-Bae;Hong, Seoun-Hwa;Kim, Dong-Ho;Huh, In-Ae;Huh, Yu-Jeong;Khan, Jong-Beom;Oh, Da-Yeon;Kim, Keon-Young;Lee, Young-Joon;Lee, Soo-Hyung;Shin, Ho-Sang
    • Analytical Science and Technology
    • /
    • v.27 no.1
    • /
    • pp.11-21
    • /
    • 2014
  • An investigation of grain size, organic compounds and metal distribution in 23 sediment samples of the Geum-River basin (Korea) was conducted in two seasons of 2012 (dry season and rainy season). The samples of sediment were collected from the basin and investigated for concentrations of some metal and general indexes containing grain size. Concentrations of Pb, Zn, Cu, Cr, Ni, As, Cd, Hg, Al and Li have been determined by inductively coupled plasma spectrometer (ICP) and the sediments organic matter content was determined by the loss on ignition, and sediments were fractionated with three different nylon sieves. Correlation analysis was made for grain size, organic material and metal concentrations, and the Pearson correlation coefficients between their concentrations were determined. As a result, the higher metal concentrations were found in the period of the dry season than in another season. The metal concentrations showed high correlation with that of organic material (COD and TOC). Thereby, the high distribution of metal concentrations in sediment containing high organic compound is suggesting an interaction with organic matter.

A Study on the Characteristics of River Sediments in Watershed Environment of Nakdong River (낙동강 수계의 유역환경 변화에 따른 퇴적환경 특성)

  • Lee, Kwonchul;Kim, Shin;Yang, Deukseok;Park, Soojung;Jeong, Hyungi;Lee, Kyuyeol
    • Korean Journal of Ecology and Environment
    • /
    • v.52 no.4
    • /
    • pp.316-323
    • /
    • 2019
  • This study was carried out to investigate sedimentary environment changes in Nakdong River sediments. For this purpose, sediments at six sites upstream of Gangjeong-Goryung Weir in the middle of the Nakdong River were collected before and after the rainy season. Particles size, IL, TOC, TN, TP, and SRP were analyzed for the sediment environment. The changes in the watershed environment before and after the rainy season (precipitation, discharge, and SS concentration) were investigated. After the rainy season, the amount of precipitation and discharge increased more than three times, and the average concentration of SS in the stream increased more than two times. Fine grained sediment and the concentrations of IL, TOC, TN, TP, SRP were increased after the rainy season. As a result of sediment contamination assessment, IL was 19~68% of the reference value, TN and TP were 21~76% and 21~58% of the reference value. The result showed strong correlation between particle size (Silt+Clay) and organic contents of sediment (IL, TOC, TN, TP and SRP). It is considered that the change of the river watershed environment (precipitation, discharge) is an important factor of the change of sedimentation environment.

Water Quality and Sediment Contamination in the Iksan Stream (익산천 수질시료와 저질토의 오염도 평가)

  • Seo, Young-Seok;Cho, Min;Oh, Byung-Taek
    • Journal of Soil and Groundwater Environment
    • /
    • v.18 no.1
    • /
    • pp.123-128
    • /
    • 2013
  • Water quality and contamination of sediment is a growing concern in the Iksan stream of Korea. Heavy metal contamination and changes in the physicochemical properties of the stream were evaluated. Water and sediment samples were collected from six sites during the dry and rainy seasons; pH, DO, EC, ORP, turbidity, $PO_4$-P, $NO_3$-N and selected heavy metals (Cu, Pb, Ni, As, Zn, Cd, Hg) were measured. Results showed almost no change in pH between seasons. DO was highest at site 2 (~2.63 mg/L) in the dry season; EC (1,540 ms/m) was greatest at site 1 in both seasons. The ORP gradually increased from the dry to rainy season at most of the sites and was highest at site 5. Turbidity was highest at site 1 and gradually decreased from the dry to rainy season at all sites except site 3. $PO_4$-P ranged from a high of 1,193mg/L at site 1 to in the dry season to a low of ~1.2 mg/L at site 4. In contrast, $NO_3$-N was highest at site 3 in the rainy season (12,531 mg/L). Among the heavy metals measured, Cu and Zn concentrations were highest at all sediment sites. Cu and Zn are added to livestock feed to improve reproductive rates and can be carried to the stream with manure. Transport of sediment and heavy metals during the rainy season is the major source of stream contamination and it is important to continue monitoring and take necessary action in these areas.

Analysis of Sediment Contamination Levels in the Giheung Reservoir (기흥저수지 퇴적물에 대한 오염도 분석)

  • Oh, Kyoung-Hee;Kim, Sung-Jin;Cho, Young-Cheol
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.26-32
    • /
    • 2018
  • In order to analyze the effects of sediment on the occurrence of algal bloom on the Giheung Reservoir, the contamination levels of sediments were evaluated. The concentrations of various organic compounds (ignition loss), as well as the total nitrogen, total phosphorus, and heavy metals (Zn, Cr, Co, Ni, Pb, As, Hg, Cd) were analyzed in the sediments taken at eighteen sites of the reservoir. The concentrations of ignition loss and total nitrogen tended to increase from upstream to downstream, and ranged from 4.38 to 12.93% and 2,153 to 4,723 mg/kg, respectively. Heavy metals were in the order of Zn>Cr>Co>Ni>Pb>As>Hg, and the contamination level of the heavy metals was not high as a whole. The concentrations of the total phosphorus were in the range of 765 ~ 3,238 mg/kg, which exceeded the contamination level of the "Sediment Quality Assessment Guideline of River and Lake Sediment (Rule No. 2015-687 of the National Institute of Environmental Research, Korea)" at two upstream sites, four downstream sites, and all downstream sites. These results indicated that the pollution level of the total phosphorus, which is the main factor related to algal bloom, was found to be serious. Therefore, it is necessary to establish a countermeasure for sediment management in order to control the algal bloom which occurs periodically in the reservoir.

Comparative Study on the Sampling Methods of Benthic Macroinvertebrates in the Fine Sediments of Freshwater (담수의 세립질 퇴적물 내 저서성 대형무척추동물 채집방법 비교 연구)

  • Kim, PilJae;Kim, Ah Reum;Kwon, Yongju;Min, Jeong Ki;Huh, In Ae;Kong, Dongsoo
    • Journal of Korean Society on Water Environment
    • /
    • v.34 no.1
    • /
    • pp.84-95
    • /
    • 2018
  • The community structure of benthic macroinvertebrates in the fine sediments of freshwater was analyzed according to various sampling tools and methods. The sediment core with the inner diameter of 7.5 cm was more effective in cost and labor in comparison to that of ${\Phi}5cm$ or ${\Phi}10cm$. The number of species increased with the increase in sample size (replicates). When it was collected five times with the ${\Phi}7.5cm$ sediment core, Shannon-Weaver's diversity and McNaughton's dominance of the sample reached about the 80 % level of the community estimates. Most species appeared in the sediment layer of 0-4 cm, and there were no newly recruited species below the depth of 4 cm. Individual abundance of benthic macroinvertebrates decreased exponentially along with the increase in sediment depth. Compared with the individual abundance of the 0-15 cm sediment layer, the abundance was 60 % in the 0-2 cm layer, 25 % in the 2-4 cm layer, 10 % in the 4-6 cm layer and 95 % in the 0-6 cm layer. Compared with organisms collected with the sieve of 0.2 mm pore, the number of species and the individual abundance sifted through the sieve with pore of 1 mm were 36 % and 88 %, and those with pore of 0.5 mm were 5 % and 55 %, respectively.

Heavy Metal Contamination and Spatial Differences in Redox Condition of the Artificial Shihwa lake, Korea (시화호의 중금속 오염과 산화-환원 상태의 공간적 차이)

  • Hyeon, Sang-Min;Kim, Eun-Su;Paeng, U-Hyeon
    • Journal of Environmental Science International
    • /
    • v.13 no.5
    • /
    • pp.479-488
    • /
    • 2004
  • Five sediment cores from the tidal flat of artificial Lake Shihwa are analyzed in terms of sedimentology and geochemistry to evaluate the heavy metal contamination and redox condition of surficial sediment following the Shihwa seawall construction. The variability of concentrations of various elements depends on the depositional environment, and reflects the various redox conditions and sediment provenances. The amounts of Ti and Al and their ratio of Ti/ Al with respect to Li clearly indicate that there is an anthropogenic contribution to the surficial sediment. The high concentrations of heavy metals suggest an anthropogenic contribution at ST. 34 and ST. 22. Concentrations of most elements (Cr, Cu, Zn and Pb) are higher near the Shihwa-Banwol industrial complex than in the central part of Lake Shihwa. Concentrations of heavy metal in surficial sediment near the Shihwa-Banwol industrial complex are two to eight times higher than in the center of Lake Shihwa. Enrichment factors (EF), which are normalized by the unpolluted shale, suggests a significant metallic contamination near the Shihwa-Banwol industrial complex (SBIC). The redox condition is divided into two anoxic and mixed oxi $c_oxic zones based on the carbon:sulfur (C/S) ratios of organic matter and elemental relationships. Correlations among geochemical elements Mn, U and Mo are significantly different from site to site, and may therefore be an indicator of the spatial redox condition. Controlling factors for switching anoxic/oxic conditions are thought to be water depth and the differences in industrial effluent supply. The variations of the Cu/Mn ratio in the sediments confirms above mentioned spatial differences of a redox condition in part, and therefore shows a location-dependence redox condition in sediments at four other sites. The redox condition of the surficial sediment characteristics of the Shihwa Lake are controlled by its geographic location and water depth.th.

An Optimal Control Theory on Economic Benefits of Dam Management: A Case of Aswan High Dam in Egypt (최적제어 이론을 이용한 댐 토사관리방안 : 이집트 아스완 댐 사례)

  • Lee, Yoon;Kim, Dong-Yeub
    • Journal of Environmental Policy
    • /
    • v.9 no.2
    • /
    • pp.41-55
    • /
    • 2010
  • This paper analyzes optimal watershed management focusing on reservoir-level sediment removal techniques. Although dams and reservoirs provide several benefits, sedimentation may reduce their storage capacity. As of today, the Aswan High Dam (AHD) in Egypt faces approximately 76% reduced life of the reservoir. Since the AHD is the major fresh water source in Egypt, sustainable use of this resource is extremely important. A model is developed to simultaneously determine optimal sediment removal strategies for upstream soil conservation efforts and reservoir-level sediment control. Two sediment removal techniques are considered: mechanical dredging and hydro-suction sediment removal system (HSRS). Moreover, different levels of upstream soil conservation efforts have introduced to control soil erosion, which is a major contributor of reservoir storage capacity reduction. We compare a baseline case, which implies no management alternative, to non-cooperative and social planners' solution. Our empirical results indicate that the socially optimal sediment removal technique is a mechanical dredging with unconstrained amount with providing a sustainable life of the reservoir. From the empirical results, we find that social welfare can be as high as $151.01 billion, and is sensitive to interest rates and agricultural soil loss.

  • PDF

Design of Optimum Volume of Sediment Settling Pond at Highland Agricultural Watershed Using WEPP Model (WEPP 모델을 이용한 고랭지밭 경사도별 침사지 적정용량 산정방법)

  • Hyun, Geun-Woo;Park, Sung-Bin;Park, Jeong-Hee;Geon, Sang-Ho;Choi, Jae-Wan;Kim, Ki-Sung;Lim, Kyoung-Jae
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.52 no.5
    • /
    • pp.87-95
    • /
    • 2010
  • The optimum volume of sediment settling pond is determined by the maximum rainfall and surface peak rate runoff from crop field. Based on analysis of measured rainfall and runoff data, it was found that rainfall intensity of 2 mm/min would result in peak rate runoff from the agricultural field of study area. Optimum pond volume under various slope scenarios were determined using the WEPP model calibrated with measured flow and sediment data for the study watershed. For the agricultural field with the slope of 7 % and area of $2,600\;m^2$ at the study area, at least $6.4\;m^3$ of sediment settling pond is needed as shown in this study. The results presented in this study could be used as a guide in designing appropriate volume of sediment settling pond at highland agricultural areas because both very detailed field measurement and calibrated WEPP model results are used in the analysis.

Sensitivity Analysis of Climate Factors on Runoff and Soil Losses in Daecheong Reservoir Watershed using SWAT (SWAT 모형을 이용한 대청댐 유역의 기후인자에 따른 유출 및 유사량 민감도 평가)

  • Ye, Lyeong;Chung, Se-Woong;Lee, Heung-Soo;Yoon, Sung-Wan;Jeong, Hee-Young
    • Journal of Korean Society on Water Environment
    • /
    • v.25 no.1
    • /
    • pp.7-17
    • /
    • 2009
  • Soil and Water Assessment Tool (SWAT) was used to assess the impact of potential future climate change on the water cycle and soil loss of the Daecheong reservoir watershed. A sensitivity analysis using influence coefficient method was conducted for two selected hydrological input parameters and three selected sediment input parameters to identify the most to the least sensitive parameters. A further detailed sensitivity analysis was performed for the parameters: Manning coefficient for channel (Cn), evaporation (ESCO), and sediment concentration in lateral (LAT_SED), support practice factor (USLA_P). Calibration and verification of SWAT were performed on monthly basis for 1993~2006 and 1977~1991, respectively. The model efficiency index (EI) and coefficient of determination ($R^2$) computed for the monthly comparisons of runoffs were 0.78 and 0.76 for the calibration period, and 0.58 and 0.65 for the verification period. The results showed that the hydrological cycle in the watershed is very sensitive to climate factors. A doubling of atmospheric $CO_2$ concentrations was predicted to result in an average annual flow increase of 27.9% and annual sediment yield increase of 23.3%. Essentially linear impacts were predicted between two precipitation change scenarios of -20, and 20%, which resulted in average annual flow and sediment yield changes at Okcheon of -53.8%, 63.0% and -55.3%, 65.8%, respectively. An average annual flow increase of 46.3% and annual sediment yield increase of 36.4% was estimated for a constant humidity increase 5%. An average annual flow decrease of 9.6% and annual sediment yield increase of 216.4% was estimated for a constant temperature increase $4^{\circ}C$.