• Title/Summary/Keyword: sediment capacity

Search Result 166, Processing Time 0.022 seconds

Denitrification and COD, TN and SS fluxes in Komso Bay, Korea (곰소만에서의 오염물질 플럭스 및 탈질산화)

  • Kim Do-Hee;Yang Jae-Sam
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.4 no.4
    • /
    • pp.32-41
    • /
    • 2001
  • We measured the fluxes of COD, TN and 55 in addition to composition and quality of sediment in Komso Bay, West Coast of Korea. The fluxes of TN, SS and COD were measured during flood tide and ebb tide in April and August, 2000. Denitrification rates in the sediments was also measured by direct produced $N_2$ gas technique on April and August from 1999 to 2000 in the same sea area. The composition of the sediments were 0.33~5.67 % of sand, 20.2~25.6 of gravel and 68.7~77.0 % of silt. Ignition loss of the sediments were 6.58~7.50 %. The concentration of hydrogen sulfide in the sediments were 0.028~0.326 mg/gㆍdry and oxidation reduction potential of the sediments were -28~-15 mV Diurnal fluxes of COD, total nitrogen, and suspended solids with tidal current and denitrification rate in the tidal flat have been determined in Komso Bay The diurnal net flux of COD was same in April. While 14.4 ton COD/hr of net influx into the tidal flat was recorded in August. The diurnal net influx of total nitrogen was 0.16 ton N/hr in April and 1.13 ton N/hr in August. The diurnal net influx of suspended solids was 0.05 ton SS/hr in April, and also net influx of suspended solids was 0.29 ton SS/hr in August. The overall purification ability of the tidal flat were estimated 0.00~5.69 g COD/$m^2/day$, 0.06~0.45 g N/m²/day and 0.02~0.12 g SS/$m^2/day$ for COD, TN and SS, respectively. Denitrification rate was 0.009~1.720 m mole ${N_2}/m^2/day$ (average 0.702 m mole ${N_2}/m^2/day$) in April and 0.033~0.133 m mole ${N_2}/m^2/day$ (average 0.077 m mole ${N_2}/m^2/day$) in August, 1999. 0.000~l.909 m mole ${N_2}/m^2/day$ (average 0.756 m mole ${N_2}/m^2/day$) in April, 0.000~1.691 m mole ${N_2}/m^2/day$ (average 0.392 m mole ${N_2}/m^2/day$) in August, 2000. Even with a wide range of denitrification rate depending on the sampling location and studied periods, the average denitrification rate was estimated 0.482 m mole ${N_2}/m^2/day$ in the tidal flat of Komso Bay.

  • PDF

Development of a 2-fluid Jet Mixer for Preventing the Sedimentation in Livestock Liquid Manure Storage Tank (가축분뇨액비저장조 침전물 퇴적 방지를 위한 2류체 제트노즐식 교반장치 개발에 관한 연구)

  • Yu, B.K.;Hong, J.T.;Kim, H.J.;Kweon, J.K.;Oh, K.Y.;Park, B.K.
    • Journal of Animal Environmental Science
    • /
    • v.18 no.3
    • /
    • pp.207-220
    • /
    • 2012
  • There are around 7,500 manure tanks to treat the manures from pigs in Korea. In the tank, there are too much sediments deposited on the base and wall, which causes low efficiency of stock capacity and manure fermentation. In order to minimize sediments and to ferment manure effectively, we developed a 2-fluid jet mixer for mixing sediments in liquid livestock manure tank. For developing the prototype, we tested a factorial experimental system with various nozzles, and simulated CFD models with two kinds of nozzle arrangement. From the results of factorial experiment and CFD simulation, we concluded the dia. ratio of primary : secondary nozzle should be 1:2 and the nozzles should be arranged at the same distances toward to the circumferential direction. With this results, we manufactured a 2-fluid jet mixer which is consists of four 2-phase nozzles, centrifugal slurry pump and root's type air blower. And, we carried out the performance test of the prototype in the round shaped liquid manure tank in the farm. The performance test results showed that the uniformity of TS (Total Solid) and VS (Volatile Solid) was raised from 21.3 g/L, 13.3 g/L In steady state to TS and VS to 23.0 g/L, 14.1 g/L in the mixing operation. Therefore, we could conclude that the prototype of 2-fluid mixer could make the solid material which could be sediments in the tank not to be deposited in the tank and to be contacted to air bubbles which could enhance the efficiency of the fermentation of livestock manure.

Screening and Identification of a Cesium-tolerant Strain of Bacteria for Cesium Biosorption (환경유래의 세슘 저항성 균주 선별 및 세슘 흡착제거 연구)

  • Kim, Gi Yong;Jang, Sung-Chan;Song, Young Ho;Lee, Chang-Soo;Huh, Yun Suk;Roh, Changhyun
    • Korean Journal of Environmental Biology
    • /
    • v.34 no.4
    • /
    • pp.304-313
    • /
    • 2016
  • One of the issues currently facing nuclear power plants is how to store spent nuclear waste materials which are contaminated with radionuclides such as $^{134}Cs$, $^{135}Cs$, and $^{137}Cs$. Bioremediation processes may offer a potent method of cleaning up radioactive cesium. However, there have only been limited reports on $Cs^+$ tolerant bacteria. In this study, we report the isolation and identification of $Cs^+$ tolerant bacteria in environmental soil and sediment. The resistant $Cs^+$ isolates were screened from enrichment cultures in R2A medium supplemented with 100 mM CsCl for 72 h, followed by microbial community analysis based on sequencing analysis from 16S rRNA gene clone libraries(NCBI's BlastN). The dominant Bacillus anthracis Roh-1 and B. cereus Roh-2 were successfully isolated from the cesium enrichment culture. Importantly, B. cereus Roh-2 is resistant to 30% more $Cs^+$ than is B. anthracis Roh-1 when treated with 50 mM CsCl. Growth experiments clearly demonstrated that the isolate had a higher tolerance to $Cs^+$. In addition, we investigated the adsorption of $0.2mg\;L^{-1}$ $Cs^+$ using B. anthracis Roh-1. The maximum $Cs^+$ biosorption capacity of B. anthracis Roh-1 was $2.01mg\;g^{-1}$ at pH 10. Thus, we show that $Cs^+$ tolerant bacterial isolates could be used for bioremediation of contaminated environments.

Ecological Role of Urban Stream and Its Improvement (도시하천의 생태학적 역할과 개선방안)

  • Son, Myoung-Won
    • Journal of the Korean association of regional geographers
    • /
    • v.4 no.1
    • /
    • pp.15-25
    • /
    • 1998
  • A stream plays an important role as the source of drinking water, the ecological space and the living space. But the today's urban stream whose ecosystem is destroyed and water quality become worse in consequence of covering, concrete dyke construction, and the adjustment of high-water-ground[dunchi], is deprived of the function as a stream. Therefore this paper aims to elucidate the role that urban stream plays ecologically and to try to find a improvement to the problem. A stream is the pathway through which several types of the solar radiation energy are transmitted and the place which is always full of life energy. In the periphery of a stream, primary productivity is high and carrying capacity of population is great. Thus ancient cities based on agricultural products grew out of the fertile surroundings of stream. In Korea most cities of the Chosen Dynasty Period based on the agriculture have grown out of the erosional basins where solar energy is concentrated. The role of a stream in this agricultural system is the source of energy and material(water and sediment) and a lifeline. In consequence of the growth of cities and the rapid growing demands of water supply after the Industrial Revolution, a stream has become a more important locational factor of city. However, because cities need the life energy of urban streams no longer, urban streams cannot play role as a lifeline. And As pollutant waste water has poured into urban streams after using external streams' water, urban streams have degraded to the status of a ditch. As the results of the progress of urbanization, the dangerousness of inundation of urban stream increased and its water quality became worse. For the sake of holding back it, local governments constructed concrete dyke, adjusted high-water-ground[dunchi], and covered the channel. But stream ecosystem went to ruin and its water quality became much worse after channelization. These problems of urban stream can be solved by transmitting much energy contained in stream to land ecosystem as like rural stream. We should dissipate most of the energy contained in urban stream by cultivating wetland vegetation from the shore of stream to high-water-ground, and should recover a primitive natural vigorous power by preparation of ecological park.

  • PDF

A Comparative Study on Hydraulic Jump and Specific Energy Losses at Downstream According to the Weir Discharge Types (보 유출형태에 따른 하류부 도수 및 비에너지 손실에 관한 비교 연구)

  • Park, Hyo-Seon;Yoon, Geun-Ho;Koo, Bon-Jin;Choi, Gye-Woon
    • Journal of Wetlands Research
    • /
    • v.15 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • The weirs built so far are mainly overflow type weirs overflowing to the upstream. Main advantages of overflow type weirs are, effective water resources management and easy design, construction and maintenance due to many accumulated studies. However, due to the special feature of the overflow type weir where water overflows through the upstream of the weir, the silt coming from the upstream is not discharged to the downstream of the weir. This increases the river bed and reduces the reservoir capacity, and as a result, the weir loses its function. A underflow type weir with a water gate has been implemented in order to solve such sediment deposit and weir maintenance problems. However due to the design problem of recently constructed underflow type weirs, the river bed of the downstream of a weir has been scoured. And this leds to a structural problem. In this study, the flow characteristics of overflow type weirs and underflow type weir, hydraulic jump length analysis depending on change of water depth and the amount of specific energy loss generated per unit length depending on a weir type have been compared and analyzed, for the effective design and management of the weirs. The experiment results show that, when identical upstream conditions of underflow type weir and an overflow type weir were maintained, the hydraulic jump length was up to twice longer with Fr(Froude number) 3.5 of the hydraulic jump length at the underflow type weir, and the hydraulic jump length gradually decreased as the downstream water depth increased. The comparative analysis result of the amount of specific energy loss generated per unit length showed that the amount of energy loss per unit length was twice higher for an overlfow type weir than a underflow type weir. Therefore, in case of a underflow type facility, an additional energy reduction facility is determined to be necessary for safety of water construction structures.

A Study on the Physico-Chemical Characteristics of Acid Sulfate Soil in Kimhae Plain (김해평야(金海平野)에 분포(分布)된 특이산성토(特異酸性土)(답)(沓)의 이화학적성질(理化學的性質)에 관(關)한 조사연구(調査硏究))

  • Park, N.J.;Park, Y.S.
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.2 no.1
    • /
    • pp.15-26
    • /
    • 1969
  • The study on physico-chemical characteristics of the acid sulfate soil present in Kimhae plain was carried out with 28 surface and subsoils from lower and higher produtive area and two representative profile samples from the areas reclaimed a few decades ago and around 10 years ago respectively. 1. There are no differences in soil texture between lower and higher productive soils being mostly silty clay loam and silty clay. 2. Very significant differences in pH, degree of base saturation and extractable aluminium content are observed; lower pH, lower degree of base saturation and higher aluminium in the lower productive soils and subsoils. The pH and degree of base saturation of these soils are extremely low whereas aluminium content is very high compared to ordinary paddy soil. 3. Cation exchange capacity of these soils are slightly higher than ordinary paddy soils. In higher productive soils, exchangeable calcium and magnesium are of same order, whereas in lower productive soils magnesium content is appreciably higher than calcium. 4. Though the soil is derived from marine and estuarine sediment, the soluble salt content is not high. There are only few lower productive surface soils and subsoils having Ec values of the saturation extracts higher than 4 mmhos but lower than 9 mmhos/cm. 5. Organic matter content of these soils is a bit higher compared to ordinary paddy soils, but, nitrogen content is comparatively low. C/N ratio of these soils is around 12. 6. Sulfur content is considerably higher but oxidizable sulfur is found to be very low. Total sulfur is generally high in subsoils and lower productive soils. 7. Active iron and available silica are slightly higher than ordinary paddy soils but easily reducible manganese is very low. Almost no differences are also observed between lower and higher productive soils. 8. Available phosphorus content is extremely low in particular, regardless of higher or lower productive soils. 9. The two representative profiles from the area of earlier reclamation and recent one show that samples from earlier reclaimed area contain less amount of free acids, sulfur compounds, toxic aluminium and soluble salts etc. than the other. This indicate greater leaching and possible addition of lime for a longer period of time. 10. From the results obtained, it can be concluded the higher productivity of group I soils is due to the greater leaching and neutralisation of acidity by liming materials, It can also be concluded that the productivity of both types can be increased by addition of liming materials and improvement of drainage facilities.

  • PDF