• Title/Summary/Keyword: sediment analysis

Search Result 1,298, Processing Time 0.027 seconds

Biogenic Particulate Matter Accumulation in Peter the Great Bay, East Sea (Japan Sea)

  • Hong, Gi-Hoon;Park, Sun-Kyu;Chung, Chang-Soo;Kim, Suk-Hyun;Tkalin, Alexander V.;Lishavskaya, Tatiana S.
    • Journal of the korean society of oceanography
    • /
    • v.31 no.3
    • /
    • pp.134-143
    • /
    • 1996
  • Sediment cores were collected from one site each in Amursky and Ussuriysky Bays in the Peter the great Bay for $^{210}Pb$, org C, N, biogenic Si, ${\delta}^{13}$C and ${\delta}^{15}$N analysis to elucidate the processes of biogenic particulate matter accumulation and early diagenetic change in the upper sediment column. Biogeochemistry at the core sites of both bays shows differences in sedimentation rate, sediment mixing, and diagenetic processes of particulate biogenic matter. Sedimentary organic matter at the core sites in both bays appeared to be largely derived from marine origin. Sedimentation rates are 173 and 118 mg $cm^{-2}$ $yr^{-1}$(0.13 and 0.11 cm $yr^{-1}$) in Amursky and Ussuriysky Bays, respectively. The surface mixed layer in the core top was present in Amursky Bay but not in Ussuriysky Bay. At the core site in Amursky Bay, incorporation of biogenic particulate matter into the sediment from the overlying waters is 236, 19, 142 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which about 70${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the rest are buried at 25 cm sediment horizon. At the core site in Ussuriysky Bay, incorporation of biogenic particulate matter into the sediment from overlying waters is 164, 18, 76 mmol $cm^{-2}$ $yr^{-1}$ for organic C, N, and biogenic Si, respectively. Of which less than 50${\%}$ of organic C and biogenic Si are degraded within the upper 25 cm sediment and the remainder are buried at 25 cm sediment horizon. This large difference of degradation of biogenic matter in the upper 25 cm sediment column appears to be resulted from the difference in sediment mixing rates between the two cores.

  • PDF

FINITE ELEMENT MODELING FOR HYDRODYNAMIC AND SEDIMENT TRANSPORT ANALYSIS (II) : SEDIMENT TRANSPORT STUDY

  • Noh, Joon-Woon
    • Water Engineering Research
    • /
    • v.4 no.2
    • /
    • pp.99-109
    • /
    • 2003
  • Since bed elevation changes are mainly dependent on the flow velocity and corresponding shear stress, it is possible to predict bed elevation numerically using velocity components. For the scour analysis due to channel contraction, a bed load transport model is developed and applied to estimate scour depth around coffer dam in the Mississippi River. During Phase I of the Lock & Dam No. 26 replacement project, a coffer dam was constructed to reduce the flow area approximately by 50%. Flow velocity increases due to the flow area reduction yields significant lowering (erosion) of the channel bed elevation. The proposed numerical model solves the sediment continuity equation using the finite element method to evaluate scour process in the vicinity of the coffer dam

  • PDF

Analysis of Hazard Areas by Sediment Disaster Prediction Techniques Based on Ground Characteristics (지반특성을 고려한 토사재해 예측 기법별 위험지 분석)

  • Choi, Wonil;Choi, Eunhwa;Baek, Seungcheol
    • Journal of the Korean GEO-environmental Society
    • /
    • v.18 no.12
    • /
    • pp.47-57
    • /
    • 2017
  • In this study, a predictive analysis was conducted on sediment disaster hazard area by selecting six research areas (Chuncheon, Seongnam, Sejong, Daejeon, Miryang and Busan) among the urban sediment disaster preliminary focus management area. The models that were used in the analysis were the existing models (SINMAP and TRIGRS) that are commonly used in predicting sediment disasters as well as the program developed through this study (LSMAP). A comparative analysis was carried out on the results as a means to review the applicability of the developed model. The parameters used in the predictions of sediment disaster hazard area were largely classified into topographic, soil, forest physiognomy and rainfall characteristics. A predictive analysis was carried out using each of the models, and it was found that the analysis using SINMAP, compared to LSMAP and TRIGRS, resulted in a prediction of a wider hazard zone. These results are considered to be due to the difference in analysis parameters applied to each model. In addition, a comparison between LSMAP, where the forest physiognomy characteristics were taken into account, and TRIGRS showed that similar tendencies were observed within a range of -0.04~2.72% for the predicted hazard area. This suggests that the forest physiognomy characteristics of mountain areas have diverse impacts on the stability of slopes, and serve as an important parameter in predicting sediment disaster hazard area.

A numerical analysis of sediment transport in an estuary (河口隣接 內 의 堆積物 輸送에 대한 數値모델 解釋)

  • 강시완;카알지
    • 한국해양학회지
    • /
    • v.22 no.1
    • /
    • pp.25-33
    • /
    • 1987
  • The transport and fate of fine-grained, cohesive sediments in an estuary were investigated numerically. A numerical model of sediment entrainment, deposition, and transport has been developed by incorporating recent results of laboratory and field investigations. The time-dependent flow fields produced by fiver inflow and semi-diurnal tides, were calculated, and the corresponding distributions of suspended-sediment concentrations were obtained. The time-changes of sediment bed condition due to entrainment and deposition were obtained. The entrained sediments contribute initially to high sediment concentrations in the estuary basin. As the time passes, the suspended-sediment concentrations were much reduced by the seaward transport due to residual currents. The erosional and dipositional areas were appeared to be strongly dependent on the current-velocity fields and sediment properties of the estuary.

  • PDF

폐금속광산 하류하천에서의 수변식물내 중금속의 축척에 관한 연구

  • 김주선;이재영;최상일
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.235-240
    • /
    • 2004
  • This study is to study accumulation of the heavy metals by riparian vegetation throughout analysis of the heavy metal concentration in riparian vegetation, water, and sediment near mine drainage. According to analyzing concentration of the heavy metals in riparian vegetation, water, and sediment, the heavy metal was indicated at the leaf significantly. Compared with the concentration of sediment soil, the maximum concentration of the As, Cd, CN, Pb, Zn was higher 2.6, 2.6, 2.5, non-detect, and 1.5 times in leaf, Also those concentration have 9.6, 16.6, 2.5, 1.6, and 2.5 times in root. As the results, the author can know the sediment has a very relative to vegetation in mine drainage, because the increasing of concentration of heavy metal in sediment gives the more accumulative concentration of heavy metal in vegetation. Compared with the concentration of contaminated site and non-contaminated site. As, Cd, CN, Pb, Zn the maximum concentration in sediment soil was higher 5.7, 258.1, 10.9, 370.0, and 298.3 times respectively. In case of vegetation, the maximum concentration of the As, Cd, CN, Pb, Zn was higher 5.6, 62.3, 5.0, non-detect, and 30.6 times in leaf. Also those concentration have 8.5, 63.3, 2.6, 60.7, and 62.1 times in root. In this study, the author can surmise that there indicated a lot of adsorption with the heavy metal concentration in contaminated mine drainage.

  • PDF

Investigation of bar parameters occurred by cross-shore sediment transport

  • Demirci, Mustafa;Akoz, M. Sami
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.2
    • /
    • pp.277-286
    • /
    • 2013
  • Cross-shore sediment transport is very important factor in the design of coastal structures, and the beach profile is mainly affected by a number of parameters, such as wave height and period, beach slope, and the material properties of the bed. In this study cross-shore sediment movement was investigated using a physical model and various offshore bar geometric parameters were determined by the resultant erosion profile. The experiments on cross- shore sediment transport carried out in a laboratory wave channel for initial base slopes of 1/8, 1/10 and 1/15. Using the regular waves with different deep-water wave steepness generated by a pedal-type wave generator, the geometrical of sediment transport rate and considerable characteristics of beach profiles under storm conditions and bar parameters affecting on-off shore sediment transport are investigated for the beach materials with the medium diameter of $d_{50}$=0.25, 0.32, 0.45, 0.62 and 0.80 mm. Non-dimensional equations were obtained by using linear and non-linear regression methods through the experimental data and were compared with previously developed equations in the literature. The results have shown that the experimental data fitted well to the proposed equations with respect to the previously developed equations.

Transport Paths of Nearshore Surface Sediment on Coast of East Sea, Korea (동해 연안 표층퇴적물의 이동경로)

  • 유규철;오재경
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.11 no.1
    • /
    • pp.50-55
    • /
    • 1999
  • Gao and Collins method (two-dimensional sediment transport trend-vector model) using grain-size parameters (mean grain size, sorting coefficient, and skewness) calculated by the statistical moment method is introduced to understand semi-quantitatively the sandy and surficial sediment transport trends on a coast of the East Sea. The result is the sediment transport vectors which indicate transport paths of surficial sediment by wave-induced currents. The corresponding morphological feature is a spit developed at the mouth of the Nam¬dae stream, which is a resultant sediment transported by longshore current and is blocking the circulation of ocean. After this, it is thought that seasonal research and hydrodynamic measurements are needed for verification of the results.

  • PDF

Analysis of Solids in Runoff to Prevent Solids Pollution (오염저감 기법개발을 위한 유출수내 고형물질 특성 규명)

  • Lee, Young-Soo
    • Journal of Korean Society of Water and Wastewater
    • /
    • v.18 no.1
    • /
    • pp.22-28
    • /
    • 2004
  • The fate and transport mechanism of pollutants which have affinities to particles, such as trace metals and some petroleum product based compounds, can be effectively explained by the movement of sediment. The sediment release from lands to adjacent water bodies due to rainfall events was investigated in an effort to predict the total suspended solids (TSS) concentrations in runoff. The contribution of sediment from land origin to the river TSS can be better understood by the relationship between TSS concentration and particle size in runoff. The sieve analysis was used to determine the particle size distribution and these results were incorporated into statistical models. The critical size of particles was set to $74{\mu}m$ which contributes to the river TSS concentration since fine particles (wash load) of the sediment in the runoff play the key role in constituting TSS in a water column of the river. Empirical relationships were developed to predict TSS in runoff from the percentage of the critical particle size and were proven statistically to be valid.

Analysis the depth effect of organic pollutants and heavy metals using biostimulant ball in contaminated coastal sediments (해양오염저질의 오염물질 정화를 위한 생물활성촉진제 투여 깊이 연구)

  • Song, Young-chae;Woo, Jung-Hui;Subha, Bakthavachallam
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2015.07a
    • /
    • pp.177-178
    • /
    • 2015
  • Sediments play a major role in determining pollution pattern in aquatic systems and reflecting the pollutant deposition. In the present study analysis the depth effect of organic pollutants and heavy metals using slow release biostimulant ball (BSB) in coastal sediment. BSB size fixed at 3cm, depth varied from 0cm to 10cm depth and 1 and 3 month interval period was carried out for the study. The organic pollutants of chemical oxygen demand, total solids and volatile solids were significantly changed at the surface sediment (0cm)in 1 month and 3 month interval time using BSB. In contrast, sediment depth increase upto 10cm the reduction percentage decrease like to control. Vertical distribution of heavy metals are not consistent from the surface layer toward the bottom layers. Heavy metals fractions were significantly changes, the exchangeable fraction was reduced and other organic and residual fractions were stabilized percentage are increased. This finding concluded BSB is effective for reduce organic pollutants, heavy metals stabilization from the contaminated sediment.

  • PDF

Recent Advances in Sedimentation and River Mechanics

  • Pierre Julien
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2002.05a
    • /
    • pp.3-16
    • /
    • 2002
  • This article describes some of the recent and on-going research developments of the author at Colorado State University. Advances in the field of sedimentation and river mechanics include basic research and computer modeling on several topics. Only a few selected topics are considered here: (1) analytical determination of velocity profiles, shear stress and sediment concentration profiles in smooth open channels; (2) experiments on bedload particle velocity in smooth and rough channels; (3) field measurements of sediment transport by size fractions in curved flumes. In terms of computer modeling, significant advances have been achieved in: (1) flashflood simulation with raster-based GIOS and radar precipitation data; and (2) physically-based computer modeling of sediment transport at the watershed scale with CASC2D-SED. Field applications, measurements and analysis of hydraulic geometry and sediment transport has been applied to: (1) gravel-bed transport measurements in a cobble-bed stream at Little Granite Creek, Wyoming; (2) sand and gravel transport by size fraction in the sharp meander bends of Fall River, Colorado; (3) changes in sand dune geometry and resistance to flow during major floods of the Rhine River in the Netherlands; (4) changes in hydraulic geometry of the Rio Grande downstream of Cochiti Dam, New Mexico; and (5) analysis of the influence of water temperature and the Coriolis force on flow velocity and sediment transport of the Lower Mississippi River in Louisiana. Recent developments also include two textbooks on "Erosion and Sedimentation" and "River Mechanics" by the author and state-of-the-art papers in the ASCE Journal of Hydraulic Engineering.

  • PDF