This paper describes a hardware implementation of a true random number generator (TRNG) for information security applications. A new approach for TRNG design was proposed by adopting random transition rules in cellular automata and applying different transition rules at every time step. The TRNG circuit was implemented on Spartan-6 FPGA device, and its hardware operation generating random data with 100 MHz clock frequency was verified. For the random data of 2×107 bits extracted from the TRNG circuit implemented in FPGA device, the randomness characteristics of the generated random data was evaluated by the NIST SP 800-22 test suite, and all of the fifteen test items were found to meet the criteria. The TRNG in this paper was implemented with 139 slices of Spartan-6 FPGA device, and it offers 600 Mbps of the true random number generation with 100 MHz clock frequency.
Objective: The objective of this study was to evaluate a work of guards, using an ergonomic method(work analysis and posture analysis). Background: Most studies about guards were conducted in the field of medical, problems of shift, and the physical problems of old workers and social problems. But, guards consist of vulnerability group so it needs an ergonomic research in musculoskeletal disorders. Method: A head of an ergonomic estimation was work analysis(determination of combined task, work tool, work time and frequency of combined task) and posture analysis(upper body and lower body) of workers based on the video. Results: The result showed that combined task of guards was classification of patrolling, security, cleaning and waiting. The security indicated the highest ratio in the work time of combined tasks. The results of posture analysis for guards indicated high value in neutral. But, lower arm indicated high value in bending(left: 59%, right: 50%). Conclusion: The results of ergonomic methods indicated that guards' physical work load was not high during work, but comfortable work environment would be required for old guards. Application: If an ergonomic rule can be integrated into existing work environments, the risk of occupational injuries and stress will be reduced.
Journal of the Korea Institute of Information Security & Cryptology
/
v.30
no.3
/
pp.455-464
/
2020
With a variety of data types and high utilization of data, non-relational databases are a popular data storage because it supports better availability and scalability. The increasing use of this technology also brings the risk of NoSQL injection attacks. Existing works mostly discuss the rule-based detection of NoSQL injection attacks that it is hard to deal with NoSQL queries beyond the coverage of the rules. In this paper, we propose a model for detecting NoSQL injection attacks. Our model is based on deep learning algorithms that select features from NoSQL queries using CNN, and classify NoSQL queries using RNN. Also, we experiment the proposed model to compare with existing models, and find that our model outperforms traditional models in terms of detection rate.
International Journal of Computer Science & Network Security
/
v.21
no.8
/
pp.327-341
/
2021
The knowledge management was considered as the inevitable result of the rule of knowledge in this era, and its importance became clear in being the main source for achieving success, the need to consider and manage knowledge as an independent field that must be addressed with a clear scientific methodology has become intangible - they are very valuable and a strategic asset. On the other hand, the innovation process relates to all parts of the organization, and helps to improve the behavioral patterns of individuals and their attitudes towards adopting modern and innovative ideas, it is a purposeful process adopted by the senior management and works to provide the capabilities and requirements for embodying the innovative behavior in it. In the field of dealing with the market, it is a product of the organization's innovative approach, which aims at advancement, change, and intended and organized renewal. The main objective of this article is to determine the most appropriate ways to integrate knowledge management mechanisms to employ innovation factors within universities based on the role of universities in supporting innovation. This was achieved through reviewing many relevant research and listing the most prominent concepts of knowledge management, its importance, objectives, and processes determining the stages of knowledge management application, the requirements for applying knowledge management, and the obstacles that impede its application; Then the statement "Innovation in universities, through which it addressed the concept of innovation, its importance, stages, and requirements for its application, as well as identifying the most prominent models of innovation, and obstacles to innovation, in addition to that the role of universities in supporting innovation will be identified. From the surveyed study done in this article, we concluded that the relationship among organizational culture, knowledge management and innovation capability can provide useful insights for managers regarding developing a strong culture, promote knowledge management practices effectively and eventually enhance the whole organization's innovation capability. Also, we found that different components of Knowledge Management as Knowledge activities, Knowledge types, transformation of knowledge and technology have a significant positive effect in bringing innovation through transformation of knowledge into knowledge assets in universities.
Journal of the Korea Institute of Information Security & Cryptology
/
v.31
no.4
/
pp.605-616
/
2021
While malwares must be accurately identifiable from arbitrary programs, existing studies using classification techniques have limitations that they can only be applied to limited samples. In this work, we propose a method to utilize API call frequency to detect and classify malware families from arbitrary programs. Our proposed method defines a rule that checks whether the call frequency of a particular API exceeds the threshold, and identifies a specific family by utilizing the rate information on the corresponding rules. In this paper, decision tree algorithm is applied to define the optimal threshold that can accurately identify a particular family from the training set. The performance measurements using 4,443 samples showed 85.1% precision and 91.3% recall rate for family detection, 97.7% precision and 98.1% reproduction rate for classification, which confirms that our method works to distinguish malware families effectively.
Journal of the Korea Academia-Industrial cooperation Society
/
v.20
no.7
/
pp.613-621
/
2019
Recently, with the development of the Internet of Things (IoT) and cloud computing technologies, security threats have increased as malicious codes infect IoT devices, and new malware spreads ransomware to cloud servers. In this study, we propose a threat-detection technique that checks obfuscated script patterns to compensate for the shortcomings of conventional signature-based and behavior-based detection methods. Proposed is a malicious code-detection technique that is based on malicious script-pattern analysis that can detect zero-day attacks while maintaining the existing detection rate by registering and checking derived distribution patterns after analyzing the types of malicious scripts distributed through websites. To verify the performance of the proposed technique, a prototype system was developed to collect a total of 390 malicious websites and experiment with 10 major malicious script-distribution patterns derived from analysis. The technique showed an average detection rate of about 86% of all items, while maintaining the existing detection speed based on the detection rule and also detecting zero-day attacks.
Journal of the Korea Institute of Information Security & Cryptology
/
v.15
no.3
/
pp.65-76
/
2005
Speeding up scalar multiplication of an elliptic curve point has been a prime approach to efficient implementation of elliptic curve schemes such as EC-DSA and EC-ElGamal. Koblitz introduced a $base-{\phi}$ expansion method using the Frobenius map. Kobayashi et al. extended the $base-{\phi}$ scalar multiplication method to suit Optimal Extension Fields(OEF) by introducing the table reference method. In this paper we propose an efficient scalar multiplication algorithm on elliptic curve over OEF. The proposed $base-{\phi}$ scalar multiplication method uses an optimized batch technique after rearranging the computation sequence of $base-{\phi}$ expansion usually called Horner's rule. The simulation results show that the new method accelerates the scalar multiplication about $20\%{\sim}40\%$ over the Kobayashi et al. method and is about three times as fast as some conventional scalar multiplication methods.
Journal of the Korea Institute of Information Security & Cryptology
/
v.10
no.4
/
pp.59-71
/
2000
Due to the advance of computer and communication technology, intrusions or crimes using a computer have been increased rapidly while various information has been provided to users conveniently. As a results, many studies are necessary to detect the activities of intruders effectively. In this paper, a new association algorithm for the anomaly detection model is proposed in the process of generating user\`s normal patterns. It is that more recently observed behavior get more affection on the process of data mining. In addition, by clustering generated normal patterns for each use or a group of similar users, it is possible to identify the usual frequency of programs or command usage for each user or a group of uses. The performance of the proposed anomaly detection system has been tested on various system Parameters in order to identify their practical ranges for maximizing its detection rate.
Journal of the Korea Institute of Information Security & Cryptology
/
v.16
no.6
/
pp.111-121
/
2006
As Internet lastly grows, network attack techniques are transformed and new attack types are appearing. The existing network-based intrusion detection systems detect well known attack, but the false-positive or false-negative against unknown attack is appearing high. In addition, The existing network-based intrusion detection systems is difficult to real time detection against a large network pack data in the network and to response and recognition against new attack type. Therefore, it requires method to heighten the detection rate about a various large dataset and to reduce the false-positive. In this paper, we propose method to reduce the false-positive using multi-level detection algorithm, that is combine the multidimensional Apriori algorithm and the modified Negative Selection algorithm. And we apply this algorithm in intrusion detection and, to be sure, it has a good performance.
Journal of the Korea Institute of Information Security & Cryptology
/
v.22
no.3
/
pp.565-573
/
2012
To investigate the business corruption, the obtainments of the business data such as personnel, manufacture, accounting and distribution etc., is absolutely necessary. Futhermore, the investigator should have the systematic extraction solution from the business data of the enterprise database, because most company manage each business data through the distributed database system, In the general business environment, the database exists in the system with upper layer application and big size file server. Besides, original resource data which input by user are distributed and stored in one or more table following the normalized rule. The earlier researches of the database structure analysis mainly handled the table relation for database's optimization and visualization. But, in the point of the digital forensic, the data, itself analysis is more important than the table relation. This paper suggests the extraction technique from the table relation which already defined in the database. Moreover, by the systematic analysis process based on the domain knowledge, analyzes the original business data structure stored in the database and proposes the solution to extract table which is related incident.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.